(Image from https://github.com/sanghyun-son/EDSR-PyTorch/blob/master/test/0853x4.png)
Ailia input shape : (1, 3, IMAGE_HEIGHT, IMAGE_WIDTH)
Ailia output shape : (1, 3, IMAGE_HEIGHT * scale, IMAGE_WIDTH * scale)
default : scale=2
Automatically downloads the onnx and prototxt files when running. It is necessary to be connected to the Internet while downloading.
For the sample image with twice the resolution (BI),
$ python3 han.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 han.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
If you want to specify the scale for the resolution, put the scale after the --scale
option.
Choose the scale in [2, 3, 4, 8].
$ python3 han.py --scale SCALE
If you want to the model trained on imaged degraded by the Blur-downscale Degradation Model (BD), specify the --blur
option.
Only a 3-resolution scale can be used with this option.
$ python3 han.py --scale 3 --blur
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 han.py --video VIDEO_PATH
The default setting is to use the optimized model and weights, but you can also switch to the normal model by using the --normal
option.
If the output image is entirely black, try to add the -e 0
option.
$ python3 han.py -e 0
Single Image Super-Resolution via a Holistic Attention Network
Pytorch 1.3.0
ONNX opset = 11
han_BIX2.onnx.prototxt han_BIX2.opt.onnx.prototxt
han_BIX3.onnx.prototxt han_BIX3.opt.onnx.prototxt
han_BIX4.onnx.prototxt han_BIX4.opt.onnx.prototxt