forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
posenet.py
195 lines (150 loc) · 5.83 KB
/
posenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import sys
import cv2
import time
import ailia
import numpy as np
sys.path.append('../../util')
# logger
from logging import getLogger # noqa: E402
import webcamera_utils # noqa: E402
from image_utils import imread, load_image # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from arg_utils import get_base_parser, get_savepath, update_parser # noqa: E402
logger = getLogger(__name__)
from posenet_util import *
# OPENPOSE: MULTIPERSON KEYPOINT DETECTION
# SOFTWARE LICENSE AGREEMENT
# ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
# ======================
# Parameters
# ======================
IMAGE_PATH = 'input.jpg'
SAVE_IMAGE_PATH = 'output.png'
IMAGE_HEIGHT = 720
IMAGE_WIDTH = 1280
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/posenet/'
THRESHOLD_POSE_DEFAULT = 0.15
THRESHOLD_PART_DEFAULT = 0.15
SCALE_DEFAULT = 0.7125
MODEL_LISTS = ['50','75','100','101']
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'Fast and accurate human pose 2D-estimation.', IMAGE_PATH, SAVE_IMAGE_PATH,
)
parser.add_argument(
'-t', '--threshold-pose', type=float, default=THRESHOLD_POSE_DEFAULT,
help='The detection pose threshold.'
)
parser.add_argument(
'--threshold-part', type=float, default=THRESHOLD_PART_DEFAULT,
help='The detection part threshold.'
)
parser.add_argument('-a','--arch', type=int, default=101,
help='model layer number lists: ' + ' | '.join(MODEL_LISTS)
)
parser.add_argument(
'--scale-factor', type=float, default=SCALE_DEFAULT,
)
args = update_parser(parser)
def keypoint_draw(image_path,draw_image, pose_scores, keypoint_scores, keypoint_coords):
draw_image = draw_skel_and_kp(
draw_image, pose_scores, keypoint_scores, keypoint_coords,
min_pose_score=args.threshold_pose, min_part_score=args.threshold_part)
if False:
print("\nResults for image: %s" % image_path)
for pi in range(len(pose_scores)):
if pose_scores[pi] == 0.:
break
print('Pose #%d, score = %f' % (pi, pose_scores[pi]))
for ki, (s, c) in enumerate(zip(keypoint_scores[pi, :], keypoint_coords[pi, :, :])):
print('Keypoint %s, score = %f, coord = %s' % (PART_NAMES[ki], s, c))
return draw_image
def detect(model,img):
output_stride = 16
input_image, draw_image, output_scale = process_input(img,args.scale_factor, output_stride=output_stride)
heatmaps_result, offsets_result, displacement_fwd_result, displacement_bwd_result = model.run(input_image)
pose_scores, keypoint_scores, keypoint_coords = decode_multiple_poses(
heatmaps_result.squeeze(0),
offsets_result.squeeze(0),
displacement_fwd_result.squeeze(0),
displacement_bwd_result.squeeze(0),
output_stride=output_stride,
max_pose_detections=10,
min_pose_score=args.threshold_pose)
keypoint_coords *= output_scale
return draw_image, pose_scores, keypoint_scores, keypoint_coords,
# ======================
# Main functions
# ======================
def recognize_from_image(model):
# input image loop
for image_path in args.input:
# prepare input data
logger.info(image_path)
img = imread(image_path)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
draw_image, pose_scores, keypoint_scores, keypoint_coords= detect(model,img)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
draw_image, pose_scores, keypoint_scores, keypoint_coords,= detect(model,img)
draw_image = keypoint_draw(image_path,draw_image, pose_scores, keypoint_scores, keypoint_coords)
# postprocessing
savepath = get_savepath(args.savepath, image_path)
cv2.imwrite( savepath, draw_image)
logger.info(f'saved at : {savepath}')
logger.info('Script finished successfully.')
def recognize_from_video(model):
# net initialize
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
writer = webcamera_utils.get_writer(args.savepath, IMAGE_HEIGHT, IMAGE_WIDTH)
else:
writer = None
frame_shown = False
while(True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
input_image, input_data = webcamera_utils.adjust_frame_size(
frame, IMAGE_HEIGHT, IMAGE_WIDTH,
)
# inference
_, pose_scores, keypoint_scores, keypoint_coords= detect(model,input_data)
# postprocessing
draw_image = keypoint_draw(None, input_data, pose_scores, keypoint_scores, keypoint_coords)
cv2.imshow('frame', draw_image)
frame_shown = True
# save results
if writer is not None:
writer.write(draw_image)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
MODEL_PATH = 'posenet_' + str(args.arch) + '.onnx.prototxt'
WEIGHT_PATH = 'posenet_' + str(args.arch) + '.onnx'
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
# net initialize
model = ailia.Net(MODEL_PATH,WEIGHT_PATH)
if args.video is not None:
# video mode
recognize_from_video(model)
else:
# image mode
recognize_from_image(model)
if __name__ == '__main__':
main()