forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolox.py
265 lines (231 loc) · 9.34 KB
/
yolox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import math
import os
import sys
import time
import ailia
import cv2
import numpy as np
from yolox_utils import multiclass_nms, postprocess, predictions_to_object
from yolox_utils import preproc as preprocess
# import original modules
sys.path.append('../../util')
# logger
from logging import getLogger
import webcamera_utils
from detector_utils import (load_image, plot_results, reverse_letterbox,
write_predictions)
from image_utils import imread # noqa: E402
from model_utils import check_and_download_models
from arg_utils import get_base_parser, get_savepath, update_parser
logger = getLogger(__name__)
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
# ======================
# Parameters
# ======================
MODEL_PARAMS = {'yolox_nano': {'input_shape': [416, 416]},
'yolox_tiny': {'input_shape': [416, 416]},
'yolox_s': {'input_shape': [640, 640]},
'yolox_m': {'input_shape': [640, 640]},
'yolox_l': {'input_shape': [640, 640]},
'yolox_darknet': {'input_shape': [640, 640]},
'yolox_x': {'input_shape': [640, 640]}}
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/yolox/'
IMAGE_PATH = 'input.jpg'
SAVE_IMAGE_PATH = 'output.jpg'
COCO_CATEGORY = [
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train",
"truck", "boat", "traffic light", "fire hydrant", "stop sign",
"parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella",
"handbag", "tie", "suitcase", "frisbee", "skis", "snowboard",
"sports ball", "kite", "baseball bat", "baseball glove", "skateboard",
"surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork",
"knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange",
"broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair",
"couch", "potted plant", "bed", "dining table", "toilet", "tv",
"laptop", "mouse", "remote", "keyboard", "cell phone", "microwave",
"oven", "toaster", "sink", "refrigerator", "book", "clock", "vase",
"scissors", "teddy bear", "hair drier", "toothbrush"
]
SCORE_THR = 0.4
NMS_THR = 0.45
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('yolox model', IMAGE_PATH, SAVE_IMAGE_PATH)
parser.add_argument(
'-m', '--model_name',
default='yolox_s',
help='[yolox_nano, yolox_tiny, yolox_s, yolox_m, yolox_l,'
'yolox_darknet, yolox_x]'
)
parser.add_argument(
'-w', '--write_prediction',
action='store_true',
help='Flag to output the prediction file.'
)
parser.add_argument(
'-th', '--threshold',
default=SCORE_THR, type=float,
help='The detection threshold for yolo. (default: '+str(SCORE_THR)+')'
)
parser.add_argument(
'-iou', '--iou',
default=NMS_THR, type=float,
help='The detection iou for yolo. (default: '+str(NMS_THR)+')'
)
parser.add_argument(
'-dt', '--detector',
action='store_true',
help='Use detector API (require ailia SDK 1.2.9).'
)
parser.add_argument(
'-dw', '--detection_width',
default=-1, type=int,
help='The detection width and height for yolo. (default: auto)'
)
parser.add_argument(
'-dh', '--detection_height',
default=-1, type=int,
help='The detection height and height for yolo. (default: auto)'
)
args = update_parser(parser)
MODEL_NAME = args.model_name
WEIGHT_PATH = MODEL_NAME + ".opt.onnx"
MODEL_PATH = MODEL_NAME + ".opt.onnx.prototxt"
HEIGHT = MODEL_PARAMS[MODEL_NAME]['input_shape'][0]
WIDTH = MODEL_PARAMS[MODEL_NAME]['input_shape'][1]
# ======================
# Main functions
# ======================
def recognize_from_image(detector):
# input image loop
for image_path in args.input:
# prepare input data
logger.debug(f'input image: {image_path}')
raw_img = imread(image_path, cv2.IMREAD_COLOR)
if not args.detector:
img, ratio = preprocess(raw_img, (HEIGHT, WIDTH))
logger.debug(f'input image shape: {raw_img.shape}')
def compute():
if args.detector:
detector.compute(raw_img, args.threshold, args.iou)
return None
else:
return detector.run(img[None, :, :, :])
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
total_time = 0
for i in range(args.benchmark_count):
start = int(round(time.time() * 1000))
output = compute()
end = int(round(time.time() * 1000))
if i != 0:
total_time = total_time + (end - start)
logger.info(f'\tailia processing time {end - start} ms')
logger.info(f'\taverage time {total_time / (args.benchmark_count-1)} ms')
else:
output = compute()
if args.detector:
res_img = plot_results(detector, raw_img, COCO_CATEGORY)
detect_object = detector
else:
predictions = postprocess(output[0], (HEIGHT, WIDTH))[0]
detect_object = predictions_to_object(predictions, raw_img, ratio, args.iou, args.threshold)
detect_object = reverse_letterbox(detect_object, raw_img, (raw_img.shape[0], raw_img.shape[1]))
res_img = plot_results(detect_object, raw_img, COCO_CATEGORY)
# plot result
savepath = get_savepath(args.savepath, image_path)
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, res_img)
# write prediction
if args.write_prediction:
pred_file = '%s.txt' % savepath.rsplit('.', 1)[0]
write_predictions(pred_file, detect_object, raw_img, COCO_CATEGORY)
logger.info('Script finished successfully.')
def recognize_from_video(detector):
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
save_h, save_w = f_h, f_w
writer = webcamera_utils.get_writer(args.savepath, save_h, save_w)
else:
writer = None
if args.write_prediction:
frame_count = 0
frame_digit = int(math.log10(capture.get(cv2.CAP_PROP_FRAME_COUNT)) + 1)
video_name = os.path.splitext(os.path.basename(args.video))[0]
frame_shown = False
while (True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
raw_img = frame
if args.detector:
detector.compute(raw_img, args.threshold, args.iou)
res_img = plot_results(detector, raw_img, COCO_CATEGORY)
detect_object = detector
else:
img, ratio = preprocess(raw_img, (HEIGHT, WIDTH))
output = detector.run(img[None, :, :, :])
predictions = postprocess(output[0], (HEIGHT, WIDTH))[0]
detect_object = predictions_to_object(predictions, raw_img, ratio, args.iou, args.threshold)
detect_object = reverse_letterbox(detect_object, raw_img, (raw_img.shape[0], raw_img.shape[1]))
res_img = plot_results(detect_object, raw_img, COCO_CATEGORY)
cv2.imshow('frame', res_img)
frame_shown = True
# save results
if writer is not None:
writer.write(res_img)
# write prediction
if args.write_prediction:
savepath = get_savepath(args.savepath, video_name, post_fix = '_%s' % (str(frame_count).zfill(frame_digit) + '_res'), ext='.png')
pred_file = '%s.txt' % savepath.rsplit('.', 1)[0]
write_predictions(pred_file, detect_object, frame, COCO_CATEGORY)
frame_count += 1
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
env_id = args.env_id
if args.detector:
detector = ailia.Detector(
MODEL_PATH,
WEIGHT_PATH,
len(COCO_CATEGORY),
format=ailia.NETWORK_IMAGE_FORMAT_BGR,
channel=ailia.NETWORK_IMAGE_CHANNEL_FIRST,
range=ailia.NETWORK_IMAGE_RANGE_U_INT8,
algorithm=ailia.DETECTOR_ALGORITHM_YOLOX,
env_id=env_id)
if args.detection_width!=-1 or args.detection_height!=-1:
detector.set_input_shape(args.detection_width,args.detection_height)
else:
detector = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id)
if args.detection_width!=-1 or args.detection_height!=-1:
global WIDTH,HEIGHT
WIDTH=args.detection_width
HEIGHT=args.detection_height
detector.set_input_shape((1,3,HEIGHT,WIDTH))
if args.video is not None:
# video mode
recognize_from_video(detector)
else:
# image mode
if args.profile:
detector.set_profile_mode(True)
recognize_from_image(detector)
if args.profile:
print(detector.get_summary())
if __name__ == '__main__':
main()