forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dab-deter.py
184 lines (147 loc) · 5.68 KB
/
dab-deter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import time
import os
import sys
import cv2
import onnxruntime
from dab_detr_utils import Detect
import ailia
# import original modules
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser, get_savepath
from model_utils import check_and_download_models
from detector_utils import load_image, reverse_letterbox, plot_results, write_predictions
import webcamera_utils
# logger
from logging import getLogger
logger = getLogger(__name__)
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
# ======================
# Parameters
# ======================
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/dab-detr/'
IMAGE_PATH = 'input.jpg'
SAVE_IMAGE_PATH = 'output.jpg'
COCO_CATEGORY = [
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train",
"truck", "boat", "traffic light", "fire hydrant", "stop sign",
"parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella",
"handbag", "tie", "suitcase", "frisbee", "skis", "snowboard",
"sports ball", "kite", "baseball bat", "baseball glove", "skateboard",
"surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork",
"knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange",
"broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair",
"couch", "potted plant", "bed", "dining table", "toilet", "tv",
"laptop", "mouse", "remote", "keyboard", "cell phone", "microwave",
"oven", "toaster", "sink", "refrigerator", "book", "clock", "vase",
"scissors", "teddy bear", "hair drier", "toothbrush"
]
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('DAB-DETR model', IMAGE_PATH, SAVE_IMAGE_PATH)
parser.add_argument(
'-o', '--onnx', action='store_true',
help="Option to use onnxrutime to run or not."
)
args = update_parser(parser)
WEIGHT_PATH = "dab_detr.onnx"
MODEL_PATH = "dab_detr.onnx.prototxt"
HEIGHT = 800
WIDTH = 1199
# ======================
# Main functions
# ======================
def recognize_from_image():
'''
env_id = args.env_id
net = ailia.Net(MODEL_PATH, WEIGHT_PATH)
net.set_input_shape((1, 3, HEIGHT, WIDTH))
ailiaSDKでモデルを読み込んだ際に下記のエラーが発生
ailia.core.AiliaException: code: -128 (Unknown error.)
+ error detail : (empty)
'''
# Onnx runtime
if args.onnx:
session = onnxruntime.InferenceSession(WEIGHT_PATH)
else:
session = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id = args.env_id)
# input image loop
for image_path in args.input:
# prepare input data
logger.debug(f'input image: {image_path}')
raw_img = cv2.imread(image_path)
logger.debug(f'input image shape: {raw_img.shape}')
img = cv2.resize(raw_img, dsize=(HEIGHT, WIDTH))
if args.benchmark:
logger.info('BENCHMARK mode')
total_time = 0
for i in range(args.benchmark_count):
start = int(round(time.time() * 1000))
detect = Detect(session, img)
output = detect.detect(args)
end = int(round(time.time() * 1000))
if i != 0:
total_time = total_time + (end - start)
logger.info(f'\tailia processing time {end - start} ms')
logger.info(f'\taverage time {total_time / (args.benchmark_count-1)} ms')
else:
pass
# inference
logger.info('Start inference...')
detect = Detect(session, img, args)
output = detect.detect(args)
detect_object = reverse_letterbox(output, raw_img, (raw_img.shape[0], raw_img.shape[1]))
res_img = plot_results(detect_object, raw_img, COCO_CATEGORY)
# plot result
savepath = get_savepath(args.savepath, image_path)
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, res_img)
logger.info('Script finished successfully.')
def recognize_from_video():
# net initialize
if args.onnx:
session = onnxruntime.InferenceSession(WEIGHT_PATH)
else:
session = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id = args.env_id)
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
writer = webcamera_utils.get_writer(args.savepath, f_h, f_w)
else:
writer = None
frame_shown = False
while (True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
img = cv2.resize(frame, dsize=(HEIGHT, WIDTH))
detect = Detect(session, img, args)
output = detect.detect(args)
detect_object = reverse_letterbox(output, frame, (frame.shape[0], frame.shape[1]))
res_img = plot_results(detect_object, frame, COCO_CATEGORY)
cv2.imshow('frame', res_img)
frame_shown = True
# save results
if writer is not None:
writer.write(res_img)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
recognize_from_image()
if __name__ == '__main__':
main()