forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanime-segmentation.py
204 lines (155 loc) · 5.38 KB
/
anime-segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import sys
import time
from logging import getLogger
import ailia
import cv2
import numpy as np
# import original modules
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser, get_savepath # noqa
from model_utils import check_and_download_models # noqa
from image_utils import normalize_image # noqa
from detector_utils import load_image # noqa
from webcamera_utils import get_capture, get_writer # noqa
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT_PATH = 'isnetis.onnx'
MODEL_PATH = 'isnetis.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/anime-segmentation/'
IMAGE_PATH = 'demo.png'
SAVE_IMAGE_PATH = 'output.png'
IMAGE_SIZE = 1024
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'Anime Segmentation', IMAGE_PATH, SAVE_IMAGE_PATH
)
parser.add_argument(
'--img-size', type=int, default=IMAGE_SIZE,
help='hyperparameter, input image size of the net'
)
parser.add_argument(
'--onnx',
action='store_true',
help='execute onnxruntime version.'
)
args = update_parser(parser)
# ======================
# Main functions
# ======================
def preprocess(img):
im_h, im_w, _ = img.shape
s = args.img_size
if im_h > im_w:
h, w = s, int(s * im_w / im_h)
else:
h, w = int(s * im_h / im_w), s
img = cv2.resize(img, (w, h), interpolation=cv2.INTER_LINEAR)
img = normalize_image(img, normalize_type='255')
ph, pw = s - h, s - w
pad_img = np.zeros([s, s, 3], dtype=np.float32)
pad_img[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = img
img = pad_img
img = img.transpose(2, 0, 1) # HWC -> CHW
img = np.expand_dims(img, axis=0)
img = img.astype(np.float32)
return img, (h, w)
def predict(net, img):
im_h, im_w = img.shape[:2]
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img, (h, w) = preprocess(img)
# feedforward
if not args.onnx:
output = net.predict([img])
else:
output = net.run(None, {'img': img})
pred = output[0]
s = pred.shape[2]
ph, pw = s - h, s - w
pred = pred[0, :, ph // 2:ph // 2 + h, pw // 2:pw // 2 + w]
mask = pred.transpose(1, 2, 0) # CHW -> HWC
mask = cv2.resize(mask, (im_w, im_h), interpolation=cv2.INTER_LINEAR)[:, :, np.newaxis]
return mask
def recognize_from_image(net):
# input image loop
for image_path in args.input:
logger.info(image_path)
# prepare input data
img = load_image(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
total_time_estimation = 0
for i in range(args.benchmark_count):
start = int(round(time.time() * 1000))
mask = predict(net, img)
end = int(round(time.time() * 1000))
estimation_time = (end - start)
# Logging
logger.info(f'\tailia processing estimation time {estimation_time} ms')
if i != 0:
total_time_estimation = total_time_estimation + estimation_time
logger.info(f'\taverage time estimation {total_time_estimation / (args.benchmark_count - 1)} ms')
else:
mask = predict(net, img)
res_img = np.concatenate((mask * img, mask * 255), axis=2).astype(np.uint8)
# plot result
savepath = get_savepath(args.savepath, image_path, ext='.png')
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, res_img)
logger.info('Script finished successfully.')
def recognize_from_video(net):
video_file = args.video if args.video else args.input[0]
capture = get_capture(video_file)
assert capture.isOpened(), 'Cannot capture source'
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
writer = get_writer(args.savepath, f_h, f_w)
else:
writer = None
frame_shown = False
while True:
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
# inference
mask = predict(net, frame)
# plot result
res_img = (mask * frame).astype(np.uint8)
# show
cv2.imshow('frame', res_img)
frame_shown = True
# save results
if writer is not None:
res_img = res_img.astype(np.uint8)
writer.write(res_img)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
env_id = args.env_id
# initialize
if not args.onnx:
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id)
else:
import onnxruntime
net = onnxruntime.InferenceSession(WEIGHT_PATH)
if args.video is not None:
recognize_from_video(net)
else:
recognize_from_image(net)
if __name__ == '__main__':
main()