forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeblur_gan.py
125 lines (94 loc) · 3.28 KB
/
deblur_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import sys
import time
import numpy as np
import cv2
from PIL import Image
import ailia
# import original modules
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser, get_savepath # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from detector_utils import load_image # noqa: E402
# logger
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT_PATH = 'net_G.onnx'
MODEL_PATH = 'net_G.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/deblur_gan/'
IMAGE_PATH = 'sample.png'
SAVE_IMAGE_PATH = 'output.png'
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('DeblurGAN model', IMAGE_PATH, SAVE_IMAGE_PATH)
parser.add_argument(
'-sz', '--fine_size', type=int, metavar='SIZE', default=None,
help='scale images to this size.'
)
args = update_parser(parser)
# ======================
# Main functions
# ======================
def preprocess(img):
mean = np.array((0.5, 0.5, 0.5))
std = np.array((0.5, 0.5, 0.5))
if args.fine_size:
target_width = args.fine_size
h, w = img.shape[:2]
if w != target_width:
h = int(target_width * h / w)
w = target_width
img = np.array(Image.fromarray(img).resize(
(w, h),
resample=Image.BICUBIC))
img = img / 255
img = (img - mean) / std
img = img.transpose(2, 0, 1) # HWC -> CHW
img = np.expand_dims(img, axis=0)
return img
def postprocess(output):
output = (output.transpose((1, 2, 0)) + 1) / 2.0 * 255.0
img = output.astype(np.uint8)
img = img[:, :, ::-1] # RGB -> BGR
return img
def recognize_from_image(net):
# input image loop
for image_path in args.input:
logger.info(image_path)
# prepare grand truth
img = load_image(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
img = preprocess(img)
logger.debug(f'input image shape: {img.shape}')
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
total_time = 0
for i in range(args.benchmark_count):
start = int(round(time.time() * 1000))
output = net.predict({'img': img})
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
if i != 0:
total_time = total_time + (end - start)
logger.info(f'\taverage time {total_time / (args.benchmark_count - 1)} ms')
else:
output = net.predict({'img': img})
output = output[0]
res_img = postprocess(output[0])
savepath = get_savepath(args.savepath, image_path, ext='.png')
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, res_img)
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
# net initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
recognize_from_image(net)
if __name__ == '__main__':
main()