forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinceptionv4.py
144 lines (113 loc) · 3.84 KB
/
inceptionv4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import sys
import time
import cv2
import ailia
import inceptionv4_labels
from inceptionv4_utils import get_processed_image
# import original modules
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from classifier_utils import plot_results, print_results # noqa: E402
from image_utils import load_image # noqa: E402
import webcamera_utils # noqa: E402
# logger
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT_PATH = 'inceptionv4.opt.onnx'
MODEL_PATH = 'inceptionv4.opt.onnx.prototxt'
REMOTE_PATH = "https://storage.googleapis.com/ailia-models/inceptionv4/"
IMAGE_PATH = 'clock.jpg'
IMAGE_HEIGHT = 299
IMAGE_WIDTH = 299
MAX_CLASS_COUNT = 3
SLEEP_TIME = 0 # for video mode
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'Inception architecture for computer vision', IMAGE_PATH, None
)
args = update_parser(parser)
# ======================
# Main functions
# ======================
def recognize_from_image():
# net initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
# input image loop
for image_path in args.input:
# prepare input data
logger.info(image_path)
input_img = load_image(
image_path,
(IMAGE_HEIGHT, IMAGE_WIDTH),
normalize_type='None',
)
input_data = get_processed_image(input_img)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(args.benchmark_count):
start = int(round(time.time() * 1000))
preds = net.predict(input_data)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
preds = net.predict(input_data)
# show results
print_results(preds, inceptionv4_labels.imagenet_category)
logger.info('Script finished successfully.')
def recognize_from_video():
# net initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath is not None:
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
writer = webcamera_utils.get_writer(args.savepath, f_h, f_w)
else:
writer = None
frame_shown = False
while(True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
# prepare input data
_, input_data = webcamera_utils.adjust_frame_size(
frame, IMAGE_HEIGHT, IMAGE_WIDTH
)
input_data = get_processed_image(input_data)
# inference
preds = net.predict(input_data)
# get result
print_results(preds, inceptionv4_labels.imagenet_category)
cv2.imshow('frame', frame)
frame_shown = True
time.sleep(SLEEP_TIME)
# save results
if writer is not None:
writer.write(frame)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
recognize_from_image()
if __name__ == '__main__':
main()