forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
alexnet.py
157 lines (121 loc) · 4.46 KB
/
alexnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import sys
import time
import ailia
import cv2
import numpy as np
import alexnet_labels
# import original modules
sys.path.append('../../util')
# logger
from logging import getLogger # noqa: E402
import webcamera_utils # noqa: E402
from classifier_utils import plot_results, print_results # noqa: E402
from image_utils import imread, load_image # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from arg_utils import get_base_parser, update_parser # noqa: E402
logger = getLogger(__name__)
from PIL import Image
# ======================
# PARAMETERS
# ======================
MODEL_PATH = "alexnet.onnx.prototxt"
WEIGHT_PATH = "alexnet.onnx"
REMOTE_PATH = "https://storage.googleapis.com/ailia-models/alexnet/"
IMAGE_PATH = "clock.jpg"
IMAGE_HEIGHT = 224
IMAGE_WIDTH = 224
# ======================
# Argument Parser Config
# ======================
parser = get_base_parser("Alexnet is ", IMAGE_PATH, None,)
args = update_parser(parser)
# ======================
# Main functions
# ======================
def _preprocess_image(img):
# alternative to transforms.Resize(256)
size = 256
w = np.asarray(img).shape[1]
h = np.asarray(img).shape[0]
short, long = (w, h) if w <= h else (h, w)
requested_new_short = size if isinstance(size, int) else size[0]
new_short, new_long = requested_new_short, int(requested_new_short * long / short)
new_w, new_h = (new_short, new_long) if w <= h else (new_long, new_short)
img = np.asarray(img)
mode_to_nptype = {"I": np.int32, "I;16": np.int16, "F": np.float32}
img = np.array(img, mode_to_nptype.get('RGB', np.uint8))
img = cv2.resize(img, (new_w, new_h))
# alternative to transforms.CenterCrop(224)
center_w = img.shape[1]/2
center_h = img.shape[0]/2
side = 224
x = center_w - side/2
y = center_h - side/2
img = img[int(y):int(y+side), int(x):int(x+side), :]
# alternative to transform.ToTensor()
img = img.transpose((2, 0, 1))
img = img / 255
# alternative to transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
img = np.array(img)
img = (img - mean[:, None, None]) / std[:, None, None]
input_tensor = img
input_batch = np.expand_dims(input_tensor, axis=0) # create a mini-batch as expected by the model
return input_batch
def _softmax(x, axis=None):
e_x = np.exp(x - np.max(x, axis=axis, keepdims=True))
e_x = e_x / np.sum(e_x, axis=axis, keepdims=True)
return e_x
def recognize_from_image():
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
# input image loop
for i, image_path in enumerate(args.input):
input_batch = imread(image_path)
input_batch = _preprocess_image(input_batch)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(args.benchmark_count):
start = int(round(time.time() * 1000))
output = net.predict(input_batch)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
output = net.predict(input_batch)
output = _softmax(output)
print_results(output, alexnet_labels.imagenet_category)
logger.info('Script finished successfully.')
def recognize_from_video():
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
capture = webcamera_utils.get_capture(args.video)
frame_shown = False
while True:
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
input_batch = _preprocess_image(frame)
output = net.predict(input_batch)
output = _softmax(output)
plot_results(
frame, output, alexnet_labels.imagenet_category
)
cv2.imshow('frame', frame)
frame_shown = True
capture.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
# recognize
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
recognize_from_image()
if __name__ == '__main__':
main()