forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblazepalm_utils.py
289 lines (233 loc) · 10.3 KB
/
blazepalm_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import cv2
import numpy as np
from scipy.special import expit
num_coords = 18
min_score_thresh = 0.75
min_suppression_threshold = 0.3
num_keypoints = 7
def resize_pad(img, resolution):
""" resize and pad images to be input to the detectors
The face and palm detector networks take 256x256 and 128x128 images
as input. As such the input image is padded and resized to fit the
size while maintaing the aspect ratio.
Returns:
img1: 256x256
img2: 128x128
scale: scale factor between original image and 256x256 image
pad: pixels of padding in the original image
"""
size0 = img.shape
if size0[0] >= size0[1]:
h1 = resolution
w1 = resolution * size0[1] // size0[0]
padh = 0
padw = resolution - w1
scale = size0[1] / w1
else:
h1 = resolution * size0[0] // size0[1]
w1 = resolution
padh = resolution - h1
padw = 0
scale = size0[0] / h1
padh1 = padh//2
padh2 = padh//2 + padh % 2
padw1 = padw//2
padw2 = padw//2 + padw % 2
img1 = cv2.resize(img, (w1, h1))
img1 = np.pad(img1, ((padh1, padh2), (padw1, padw2), (0, 0)), mode='constant')
pad = (int(padh1 * scale), int(padw1 * scale))
img2 = cv2.resize(img1, (resolution, resolution))
return img1, img2, scale, pad
def decode_boxes(raw_boxes, anchors, resolution):
"""Converts the predictions into actual coordinates using
the anchor boxes. Processes the entire batch at once.
"""
x_scale = resolution
y_scale = resolution
h_scale = resolution
w_scale = resolution
boxes = np.zeros_like(raw_boxes)
x_center = raw_boxes[..., 0] / x_scale * anchors[:, 2] + anchors[:, 0]
y_center = raw_boxes[..., 1] / y_scale * anchors[:, 3] + anchors[:, 1]
w = raw_boxes[..., 2] / w_scale * anchors[:, 2]
h = raw_boxes[..., 3] / h_scale * anchors[:, 3]
boxes[..., 0] = y_center - h / 2. # ymin
boxes[..., 1] = x_center - w / 2. # xmin
boxes[..., 2] = y_center + h / 2. # ymax
boxes[..., 3] = x_center + w / 2. # xmax
for k in range(num_keypoints):
offset = 4 + k*2
keypoint_x = raw_boxes[..., offset ] / x_scale * anchors[:, 2] + anchors[:, 0]
keypoint_y = raw_boxes[..., offset + 1] / y_scale * anchors[:, 3] + anchors[:, 1]
boxes[..., offset ] = keypoint_x
boxes[..., offset + 1] = keypoint_y
return boxes
def raw_output_to_detections(raw_box, raw_score, anchors, resolution):
"""The output of the neural network is an array of shape (b, 896, 18)
containing the bounding box regressor predictions, as well as an array
of shape (b, 896, 1) with the classification confidences.
This function converts these two "raw" arrays into proper detections.
Returns a list of (num_detections, 13) arrays, one for each image in
the batch.
This is based on the source code from:
mediapipe/calculators/tflite/tflite_tensors_to_detections_calculator.cc
mediapipe/calculators/tflite/tflite_tensors_to_detections_calculator.proto
"""
detection_boxes = decode_boxes(raw_box, anchors, resolution)
thresh = 100.0
raw_score = raw_score.clip(-thresh, thresh)
# instead of defining our own sigmoid function which yields a warning)
# expit = sigmoid
detection_scores = expit(raw_score).squeeze(axis=-1)
# Note: we stripped off the last dimension from the scores tensor
# because there is only has one class. Now we can simply use a mask
# to filter out the boxes with too low confidence.
mask = detection_scores >= min_score_thresh
# Because each image from the batch can have a different number of
# detections, process them one at a time using a loop.
output_detections = []
for i in range(raw_box.shape[0]):
boxes = detection_boxes[i, mask[i]]
scores = np.expand_dims(detection_scores[i, mask[i]], axis=-1)
output_detections.append(np.concatenate((boxes, scores), axis=-1))
return output_detections
def intersect(box_a, box_b):
""" We resize both tensors to [A,B,2] without new malloc:
[A,2] -> [A,1,2] -> [A,B,2]
[B,2] -> [1,B,2] -> [A,B,2]
Then we compute the area of intersect between box_a and box_b.
Args:
box_a: (tensor) bounding boxes, Shape: [A,4].
box_b: (tensor) bounding boxes, Shape: [B,4].
Return:
(tensor) intersection area, Shape: [A,B].
"""
A = box_a.shape[0]
B = box_b.shape[0]
max_xy = np.minimum(
np.repeat(np.expand_dims(box_a[:, 2:], axis=1), B, axis=1),
np.repeat(np.expand_dims(box_b[:, 2:], axis=0), A, axis=0),
)
min_xy = np.maximum(
np.repeat(np.expand_dims(box_a[:, :2], axis=1), B, axis=1),
np.repeat(np.expand_dims(box_b[:, :2], axis=0), A, axis=0),
)
inter = np.clip((max_xy - min_xy), 0, None)
return inter[:, :, 0] * inter[:, :, 1]
def jaccard(box_a, box_b):
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap
is simply the intersection over union of two boxes. Here we operate on
ground truth boxes and default boxes.
E.g.:
A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
Args:
box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
Return:
jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
"""
inter = intersect(box_a, box_b)
area_a = np.repeat(
np.expand_dims(
(box_a[:, 2]-box_a[:, 0]) * (box_a[:, 3]-box_a[:, 1]),
axis=1
),
inter.shape[1],
axis=1
) # [A,B]
area_b = np.repeat(
np.expand_dims(
(box_b[:, 2]-box_b[:, 0]) * (box_b[:, 3]-box_b[:, 1]),
axis=0
),
inter.shape[0],
axis=0
) # [A,B]
union = area_a + area_b - inter
return inter / union # [A,B]
def overlap_similarity(box, other_boxes):
"""Computes the IOU between a bounding box and set of other boxes."""
return jaccard(np.expand_dims(box, axis=0), other_boxes).squeeze(0)
def weighted_non_max_suppression(detections):
"""The alternative NMS method as mentioned in the BlazeFace paper:
"We replace the suppression algorithm with a blending strategy that
estimates the regression parameters of a bounding box as a weighted
mean between the overlapping predictions."
The original MediaPipe code assigns the score of the most confident
detection to the weighted detection, but we take the average score
of the overlapping detections.
The input detections should be a Tensor of shape (count, 17).
Returns a list of PyTorch tensors, one for each detected face.
This is based on the source code from:
mediapipe/calculators/util/non_max_suppression_calculator.cc
mediapipe/calculators/util/non_max_suppression_calculator.proto
"""
if len(detections) == 0:
return []
output_detections = []
# Sort the detections from highest to lowest score.
# argsort() returns ascending order, therefore read the array from end
remaining = np.argsort(detections[:, num_coords])[::-1]
while len(remaining) > 0:
detection = detections[remaining[0]]
# Compute the overlap between the first box and the other
# remaining boxes. (Note that the other_boxes also include
# the first_box.)
first_box = detection[:4]
other_boxes = detections[remaining, :4]
ious = overlap_similarity(first_box, other_boxes)
# If two detections don't overlap enough, they are considered
# to be from different faces.
mask = ious > min_suppression_threshold
overlapping = remaining[mask]
remaining = remaining[~mask]
# Take an average of the coordinates from the overlapping
# detections, weighted by their confidence scores.
weighted_detection = detection.copy()
if len(overlapping) > 1:
coordinates = detections[overlapping, :num_coords]
scores = detections[overlapping, num_coords:num_coords+1]
total_score = scores.sum()
weighted = (coordinates * scores).sum(axis=0) / total_score
weighted_detection[:num_coords] = weighted
weighted_detection[num_coords] = total_score / len(overlapping)
output_detections.append(weighted_detection)
return output_detections
def denormalize_detections(detections, scale, pad, resolution):
""" maps detection coordinates from [0,1] to image coordinates
The face and palm detector networks take 256x256 and 128x128 images
as input. As such the input image is padded and resized to fit the
size while maintaing the aspect ratio. This function maps the
normalized coordinates back to the original image coordinates.
Inputs:
detections: nxm tensor. n is the number of detections.
m is 4+2*k where the first 4 valuse are the bounding
box coordinates and k is the number of additional
keypoints output by the detector.
scale: scalar that was used to resize the image
pad: padding in the x and y dimensions
"""
image_size = resolution
detections[:, 0] = detections[:, 0] * scale * image_size - pad[0]
detections[:, 1] = detections[:, 1] * scale * image_size - pad[1]
detections[:, 2] = detections[:, 2] * scale * image_size - pad[0]
detections[:, 3] = detections[:, 3] * scale * image_size - pad[1]
detections[:, 4::2] = detections[:, 4::2] * scale * image_size - pad[1]
detections[:, 5::2] = detections[:, 5::2] * scale * image_size - pad[0]
return detections
def postprocess(preds_ailia, anchor_path='anchors.npy', resolution=256):
"""
Process detection predictions from ailia and return filtered detections
"""
raw_box = preds_ailia[0] # (1, 896, 18)
raw_score = preds_ailia[1] # (1, 896, 1)
anchors = np.load(anchor_path).astype("float32")
# Postprocess the raw predictions:
detections = raw_output_to_detections(raw_box, raw_score, anchors, resolution)
# Non-maximum suppression to remove overlapping detections:
filtered_detections = []
for i in range(len(detections)):
faces = weighted_non_max_suppression(detections[i])
faces = np.stack(faces) if len(faces) > 0 else np.zeros((0, num_coords+1))
filtered_detections.append(faces)
return filtered_detections