forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblazepalm.py
240 lines (201 loc) · 7.68 KB
/
blazepalm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import sys
import time
import ailia
import cv2
import numpy as np
import blazepalm_utils as but
sys.path.append('../../util')
# logger
from logging import getLogger # noqa: E402
import webcamera_utils # noqa: E402
from image_utils import imread, load_image # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from arg_utils import get_base_parser, get_savepath, update_parser # noqa: E402
from webcamera_utils import get_capture, get_writer # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters 1
# ======================
IMAGE_PATH = 'person_with_hands.jpg'
SAVE_IMAGE_PATH = 'output.png'
# ======================
# Argument Parser Config
# ======================
parser = get_base_parser(
'BlazePalm, on-device real-time palm detection.',
IMAGE_PATH,
SAVE_IMAGE_PATH,
)
parser.add_argument(
'-m', '--model_name',
default='blazepalm',
help='[blazepalm, palm_detection, palm_detection_full]'
)
parser.add_argument(
'--onnx',
action='store_true',
help='By default, the ailia SDK is used, but with this option, you can switch to using ONNX Runtime'
)
args = update_parser(parser)
# ======================
# Parameters 2
# ======================
MODEL_NAME = 'blazepalm'
if args.model_name == "blazepalm":
#MediaPipePyTorch (https://github.com/zmurez/MediaPipePyTorch)
WEIGHT_PATH = f'blazepalm.onnx'
MODEL_PATH = WEIGHT_PATH+".prototxt"
IMAGE_HEIGHT = 256
IMAGE_WIDTH = 256
ANCHOR_PATH = 'anchors.npy'
CHANNEL_FIRST = True
elif args.model_name == "palm_detection":
#Download palm_detection.tflite
#https://github.com/google/mediapipe/tree/350fbb2100ad531bc110b93aaea23d96af5a5064/mediapipe/modules/palm_detection
#python3 -m tf2onnx.convert --opset 11 --tflite palm_detection.tflite --output palm_detection.onnx
WEIGHT_PATH = f'palm_detection.onnx'
MODEL_PATH = WEIGHT_PATH+".prototxt"
IMAGE_HEIGHT = 128
IMAGE_WIDTH = 128
ANCHOR_PATH = 'anchors_128.npy'
CHANNEL_FIRST = False
elif args.model_name == "palm_detection_full":
#Download palm_detection_full.tflite
#https://github.com/google/mediapipe/tree/master/mediapipe/modules/palm_detection
#python3 -m tf2onnx.convert --opset 11 --tflite palm_detection_full.tflite --output palm_detection.onnx
WEIGHT_PATH = f'palm_detection_full.onnx'
MODEL_PATH = WEIGHT_PATH+".prototxt"
IMAGE_HEIGHT = 192
IMAGE_WIDTH = 192
ANCHOR_PATH = 'anchors_192.npy'
CHANNEL_FIRST = False
else:
raise "unknown model"
REMOTE_PATH = f'https://storage.googleapis.com/ailia-models/{MODEL_NAME}/'
# ======================
# Utils
# ======================
def display_result(img, detections, with_keypoints=True):
if detections.ndim == 1:
detections = np.expand_dims(detections, axis=0)
n_keypoints = detections.shape[1] // 2 - 2
for i in range(detections.shape[0]):
ymin = detections[i, 0]
xmin = detections[i, 1]
ymax = detections[i, 2]
xmax = detections[i, 3]
start_point = (int(xmin), int(ymin))
end_point = (int(xmax), int(ymax))
img = cv2.rectangle(img, start_point, end_point, (255, 0, 0), 1)
if with_keypoints:
for k in range(n_keypoints):
kp_x = int(detections[i, 4 + k*2])
kp_y = int(detections[i, 4 + k*2 + 1])
cv2.circle(img, (kp_x, kp_y), 2, (0, 0, 255), thickness=2)
return img
# ======================
# Main functions
# ======================
def recognize_from_image():
# net initialize
if args.onnx:
import onnxruntime
net = onnxruntime.InferenceSession(WEIGHT_PATH)
else:
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
# input image loop
for image_path in args.input:
# prepare input data
logger.info(image_path)
src_img = imread(image_path)
img256, _, scale, pad = but.resize_pad(src_img[:, :, ::-1],IMAGE_WIDTH)
input_data = img256.astype('float32') / 255.
input_data = np.expand_dims(np.moveaxis(input_data, -1, 0), 0)
if not CHANNEL_FIRST:
input_data = input_data.transpose((0,2,3,1))
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for _ in range(5):
start = int(round(time.time() * 1000))
preds = net.predict([input_data])
normalized_detections = but.postprocess(preds,anchor_path=ANCHOR_PATH,resolution=IMAGE_WIDTH)[0]
detections = but.denormalize_detections(
normalized_detections, scale, pad, resolution=IMAGE_WIDTH
)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
if args.onnx:
input_name = net.get_inputs()[0].name
preds = net.run(None, {input_name: input_data.astype(np.float32)})
else:
preds = net.predict([input_data])
normalized_detections = but.postprocess(preds, anchor_path=ANCHOR_PATH,resolution=IMAGE_WIDTH)[0]
detections = but.denormalize_detections(
normalized_detections, scale, pad, resolution=IMAGE_WIDTH
)
# postprocessing
display_result(src_img, detections)
savepath = get_savepath(args.savepath, image_path)
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, src_img)
logger.info('Script finished successfully.')
def recognize_from_video():
# net initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
writer = get_writer(args.savepath, f_h, f_w)
else:
writer = None
frame_shown = False
while(True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
img256, _, scale, pad = but.resize_pad(frame[:, :, ::-1], resolution=IMAGE_WIDTH)
input_data = img256.astype('float32') / 255.
input_data = np.expand_dims(np.moveaxis(input_data, -1, 0), 0)
if not CHANNEL_FIRST:
input_data = input_data.transpose((0,2,3,1))
# inference
preds = net.predict([input_data])
normalized_detections = but.postprocess(preds, anchor_path=ANCHOR_PATH, resolution=IMAGE_WIDTH)[0]
detections = but.denormalize_detections(
normalized_detections, scale, pad, resolution=IMAGE_WIDTH
)
# postprocessing
display_result(frame, detections)
visual_img = frame
if args.video == '0': # Flip horizontally if camera
visual_img = np.ascontiguousarray(frame[:,::-1,:])
cv2.imshow('frame', visual_img)
frame_shown = True
# save results
if writer is not None:
writer.write(frame)
capture.release()
if writer is not None:
writer.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
recognize_from_image()
if __name__ == '__main__':
main()