Shape : (1, 3, 512, 512)
(Image from https://github.com/TencentARC/GFPGAN/blob/master/inputs/whole_imgs/10045.png)
Shape : (1, 3, 512, 512)
This model requires additional module.
# Install facexlib - https://github.com/xinntao/facexlib
# We use face restoration helper in the facexlib package
pip3 install facexlib
# If you want to enhance the background (non-face) regions with Real-ESRGAN,
# you also need to install the realesrgan package
# Install basicsr - https://github.com/xinntao/BasicSR
pip3 install basicsr
pip3 install realesrgan
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 gfpgan.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 gfpgan.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 gfpgan.py --video VIDEO_PATH
If the input image is aligned, specify the --aligned
option.
$ python3 gfpgan.py --aligned
If you want to use the facexlib module for face restoration in face detection mode, specify the --facexlib
option.
$ python3 gfpgan.py --facexlib
If you upsampling the image, specify the --upscale
option with scale value.
In addition, if you with Real-ESRGAN, specify the --realesrgan
option.
$ python3 gfpgan.py --upscale 2 --realesrgan
Pytorch
ONNX opset=11