forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmtcnn_util.py
459 lines (344 loc) · 15.5 KB
/
mtcnn_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import cv2
import numpy as np
import ailia
class StageStatus(object):
"""
Keeps status between MTCNN stages
"""
def __init__(self, pad_result: tuple = None, width=0, height=0):
self.width = width
self.height = height
self.dy = self.edy = self.dx = self.edx = self.y = self.ey = self.x = self.ex = self.tmpw = self.tmph = []
if pad_result is not None:
self.update(pad_result)
def update(self, pad_result: tuple):
s = self
s.dy, s.edy, s.dx, s.edx, s.y, s.ey, s.x, s.ex, s.tmpw, s.tmph = pad_result
class MTCNN(object):
"""
Allows to perform MTCNN Detection ->
a) Detection of faces (with the confidence probability)
b) Detection of keypoints (left eye, right eye, nose, mouth_left, mouth_right)
"""
def __init__(self, min_face_size: int = 20, steps_threshold: list = None,
scale_factor: float = 0.709):
"""
Initializes the MTCNN.
:param weights_file: file uri with the weights of the P, R and O networks from MTCNN. By default it will load
the ones bundled with the package.
:param min_face_size: minimum size of the face to detect
:param steps_threshold: step's thresholds values
:param scale_factor: scale factor
"""
if steps_threshold is None:
steps_threshold = [0.6, 0.7, 0.7]
self._min_face_size = min_face_size
self._steps_threshold = steps_threshold
self._scale_factor = scale_factor
self._pnet = ailia.Net(None,"pnet.onnx")
self._rnet = ailia.Net(None,"rnet.onnx")
self._onet = ailia.Net(None,"onet.onnx")
@property
def min_face_size(self):
return self._min_face_size
@min_face_size.setter
def min_face_size(self, mfc=20):
try:
self._min_face_size = int(mfc)
except ValueError:
self._min_face_size = 20
def __compute_scale_pyramid(self, m, min_layer):
scales = []
factor_count = 0
while min_layer >= 12:
scales += [m * np.power(self._scale_factor, factor_count)]
min_layer = min_layer * self._scale_factor
factor_count += 1
return scales
@staticmethod
def __scale_image(image, scale: float):
"""
Scales the image to a given scale.
:param image:
:param scale:
:return:
"""
height, width, _ = image.shape
width_scaled = int(np.ceil(width * scale))
height_scaled = int(np.ceil(height * scale))
im_data = cv2.resize(image, (width_scaled, height_scaled), interpolation=cv2.INTER_AREA)
# Normalize the image's pixels
im_data_normalized = (im_data - 127.5) * 0.0078125
return im_data_normalized
@staticmethod
def __generate_bounding_box(imap, reg, scale, t):
# use heatmap to generate bounding boxes
stride = 2
cellsize = 12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:, :, 0])
dy1 = np.transpose(reg[:, :, 1])
dx2 = np.transpose(reg[:, :, 2])
dy2 = np.transpose(reg[:, :, 3])
y, x = np.where(imap >= t)
if y.shape[0] == 1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y, x)]
reg = np.transpose(np.vstack([dx1[(y, x)], dy1[(y, x)], dx2[(y, x)], dy2[(y, x)]]))
if reg.size == 0:
reg = np.empty(shape=(0, 3))
bb = np.transpose(np.vstack([y, x]))
q1 = np.fix((stride * bb + 1) / scale)
q2 = np.fix((stride * bb + cellsize) / scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score, 1), reg])
return boundingbox, reg
@staticmethod
def __nms(boxes, threshold, method):
"""
Non Maximum Suppression.
:param boxes: np array with bounding boxes.
:param threshold:
:param method: NMS method to apply. Available values ('Min', 'Union')
:return:
"""
if boxes.size == 0:
return np.empty((0, 3))
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
s = boxes[:, 4]
area = (x2 - x1 + 1) * (y2 - y1 + 1)
sorted_s = np.argsort(s)
pick = np.zeros_like(s, dtype=np.int16)
counter = 0
while sorted_s.size > 0:
i = sorted_s[-1]
pick[counter] = i
counter += 1
idx = sorted_s[0:-1]
xx1 = np.maximum(x1[i], x1[idx])
yy1 = np.maximum(y1[i], y1[idx])
xx2 = np.minimum(x2[i], x2[idx])
yy2 = np.minimum(y2[i], y2[idx])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
if method is 'Min':
o = inter / np.minimum(area[i], area[idx])
else:
o = inter / (area[i] + area[idx] - inter)
sorted_s = sorted_s[np.where(o <= threshold)]
pick = pick[0:counter]
return pick
@staticmethod
def __pad(total_boxes, w, h):
# compute the padding coordinates (pad the bounding boxes to square)
tmpw = (total_boxes[:, 2] - total_boxes[:, 0] + 1).astype(np.int32)
tmph = (total_boxes[:, 3] - total_boxes[:, 1] + 1).astype(np.int32)
numbox = total_boxes.shape[0]
dx = np.ones(numbox, dtype=np.int32)
dy = np.ones(numbox, dtype=np.int32)
edx = tmpw.copy().astype(np.int32)
edy = tmph.copy().astype(np.int32)
x = total_boxes[:, 0].copy().astype(np.int32)
y = total_boxes[:, 1].copy().astype(np.int32)
ex = total_boxes[:, 2].copy().astype(np.int32)
ey = total_boxes[:, 3].copy().astype(np.int32)
tmp = np.where(ex > w)
edx.flat[tmp] = np.expand_dims(-ex[tmp] + w + tmpw[tmp], 1)
ex[tmp] = w
tmp = np.where(ey > h)
edy.flat[tmp] = np.expand_dims(-ey[tmp] + h + tmph[tmp], 1)
ey[tmp] = h
tmp = np.where(x < 1)
dx.flat[tmp] = np.expand_dims(2 - x[tmp], 1)
x[tmp] = 1
tmp = np.where(y < 1)
dy.flat[tmp] = np.expand_dims(2 - y[tmp], 1)
y[tmp] = 1
return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph
@staticmethod
def __rerec(bbox):
# convert bbox to square
height = bbox[:, 3] - bbox[:, 1]
width = bbox[:, 2] - bbox[:, 0]
max_side_length = np.maximum(width, height)
bbox[:, 0] = bbox[:, 0] + width * 0.5 - max_side_length * 0.5
bbox[:, 1] = bbox[:, 1] + height * 0.5 - max_side_length * 0.5
bbox[:, 2:4] = bbox[:, 0:2] + np.transpose(np.tile(max_side_length, (2, 1)))
return bbox
@staticmethod
def __bbreg(boundingbox, reg):
# calibrate bounding boxes
if reg.shape[1] == 1:
reg = np.reshape(reg, (reg.shape[2], reg.shape[3]))
w = boundingbox[:, 2] - boundingbox[:, 0] + 1
h = boundingbox[:, 3] - boundingbox[:, 1] + 1
b1 = boundingbox[:, 0] + reg[:, 0] * w
b2 = boundingbox[:, 1] + reg[:, 1] * h
b3 = boundingbox[:, 2] + reg[:, 2] * w
b4 = boundingbox[:, 3] + reg[:, 3] * h
boundingbox[:, 0:4] = np.transpose(np.vstack([b1, b2, b3, b4]))
return boundingbox
def detect_faces(self, img) -> list:
"""
Detects bounding boxes from the specified image.
:param img: image to process
:return: list containing all the bounding boxes detected with their keypoints.
"""
if img is None or not hasattr(img, "shape"):
raise InvalidImage("Image not valid.")
height, width, _ = img.shape
stage_status = StageStatus(width=width, height=height)
m = 12 / self._min_face_size
min_layer = np.amin([height, width]) * m
scales = self.__compute_scale_pyramid(m, min_layer)
stages = [self.__stage1, self.__stage2, self.__stage3]
result = [scales, stage_status]
# We pipe here each of the stages
for stage in stages:
result = stage(img, result[0], result[1])
[total_boxes, points] = result
bounding_boxes = []
for bounding_box, keypoints in zip(total_boxes, points.T):
x = max(0, int(bounding_box[0]))
y = max(0, int(bounding_box[1]))
width = int(bounding_box[2] - x)
height = int(bounding_box[3] - y)
bounding_boxes.append({
'box': [x, y, width, height],
'confidence': bounding_box[-1],
'keypoints': {
'left_eye': (int(keypoints[0]), int(keypoints[5])),
'right_eye': (int(keypoints[1]), int(keypoints[6])),
'nose': (int(keypoints[2]), int(keypoints[7])),
'mouth_left': (int(keypoints[3]), int(keypoints[8])),
'mouth_right': (int(keypoints[4]), int(keypoints[9])),
}
})
return bounding_boxes
def __stage1(self, image, scales: list, stage_status: StageStatus):
"""
First stage of the MTCNN.
:param image:
:param scales:
:param stage_status:
:return:
"""
total_boxes = np.empty((0, 9))
status = stage_status
for scale in scales:
scaled_image = self.__scale_image(image, scale)
img_x = np.expand_dims(scaled_image, 0)
img_y = np.transpose(img_x, (0, 2, 1, 3))
out = self._pnet.run(img_y)
out0 = np.transpose(out[0], (0, 2, 1, 3))
out1 = np.transpose(out[1], (0, 2, 1, 3))
boxes, _ = self.__generate_bounding_box(out1[0, :, :, 1].copy(),
out0[0, :, :, :].copy(), scale, self._steps_threshold[0])
# inter-scale nms
pick = self.__nms(boxes.copy(), 0.5, 'Union')
if boxes.size > 0 and pick.size > 0:
boxes = boxes[pick, :]
total_boxes = np.append(total_boxes, boxes, axis=0)
numboxes = total_boxes.shape[0]
if numboxes > 0:
pick = self.__nms(total_boxes.copy(), 0.7, 'Union')
total_boxes = total_boxes[pick, :]
regw = total_boxes[:, 2] - total_boxes[:, 0]
regh = total_boxes[:, 3] - total_boxes[:, 1]
qq1 = total_boxes[:, 0] + total_boxes[:, 5] * regw
qq2 = total_boxes[:, 1] + total_boxes[:, 6] * regh
qq3 = total_boxes[:, 2] + total_boxes[:, 7] * regw
qq4 = total_boxes[:, 3] + total_boxes[:, 8] * regh
total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:, 4]]))
total_boxes = self.__rerec(total_boxes.copy())
total_boxes[:, 0:4] = np.fix(total_boxes[:, 0:4]).astype(np.int32)
status = StageStatus(self.__pad(total_boxes.copy(), stage_status.width, stage_status.height),
width=stage_status.width, height=stage_status.height)
return total_boxes, status
def __stage2(self, img, total_boxes, stage_status: StageStatus):
"""
Second stage of the MTCNN.
:param img:
:param total_boxes:
:param stage_status:
:return:
"""
num_boxes = total_boxes.shape[0]
if num_boxes == 0:
return total_boxes, stage_status
# second stage
tempimg = np.zeros(shape=(24, 24, 3, num_boxes))
for k in range(0, num_boxes):
tmp = np.zeros((int(stage_status.tmph[k]), int(stage_status.tmpw[k]), 3))
tmp[stage_status.dy[k] - 1:stage_status.edy[k], stage_status.dx[k] - 1:stage_status.edx[k], :] = \
img[stage_status.y[k] - 1:stage_status.ey[k], stage_status.x[k] - 1:stage_status.ex[k], :]
if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0:
tempimg[:, :, :, k] = cv2.resize(tmp, (24, 24), interpolation=cv2.INTER_AREA)
else:
return np.empty(shape=(0,)), stage_status
tempimg = (tempimg - 127.5) * 0.0078125
tempimg1 = np.transpose(tempimg, (3, 1, 0, 2))
out = self._rnet.run(tempimg1)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
score = out1[1, :]
ipass = np.where(score > self._steps_threshold[1])
total_boxes = np.hstack([total_boxes[ipass[0], 0:4].copy(), np.expand_dims(score[ipass].copy(), 1)])
mv = out0[:, ipass[0]]
if total_boxes.shape[0] > 0:
pick = self.__nms(total_boxes, 0.7, 'Union')
total_boxes = total_boxes[pick, :]
total_boxes = self.__bbreg(total_boxes.copy(), np.transpose(mv[:, pick]))
total_boxes = self.__rerec(total_boxes.copy())
return total_boxes, stage_status
def __stage3(self, img, total_boxes, stage_status: StageStatus):
"""
Third stage of the MTCNN.
:param img:
:param total_boxes:
:param stage_status:
:return:
"""
num_boxes = total_boxes.shape[0]
if num_boxes == 0:
return total_boxes, np.empty(shape=(0,))
total_boxes = np.fix(total_boxes).astype(np.int32)
status = StageStatus(self.__pad(total_boxes.copy(), stage_status.width, stage_status.height),
width=stage_status.width, height=stage_status.height)
tempimg = np.zeros((48, 48, 3, num_boxes))
for k in range(0, num_boxes):
tmp = np.zeros((int(status.tmph[k]), int(status.tmpw[k]), 3))
tmp[status.dy[k] - 1:status.edy[k], status.dx[k] - 1:status.edx[k], :] = \
img[status.y[k] - 1:status.ey[k], status.x[k] - 1:status.ex[k], :]
if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0:
tempimg[:, :, :, k] = cv2.resize(tmp, (48, 48), interpolation=cv2.INTER_AREA)
else:
return np.empty(shape=(0,)), np.empty(shape=(0,))
tempimg = (tempimg - 127.5) * 0.0078125
tempimg1 = np.transpose(tempimg, (3, 1, 0, 2))
out = self._onet.run(tempimg1)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
out2 = np.transpose(out[2])
score = out2[1, :]
points = out1
ipass = np.where(score > self._steps_threshold[2])
points = points[:, ipass[0]]
total_boxes = np.hstack([total_boxes[ipass[0], 0:4].copy(), np.expand_dims(score[ipass].copy(), 1)])
mv = out0[:, ipass[0]]
w = total_boxes[:, 2] - total_boxes[:, 0] + 1
h = total_boxes[:, 3] - total_boxes[:, 1] + 1
points[0:5, :] = np.tile(w, (5, 1)) * points[0:5, :] + np.tile(total_boxes[:, 0], (5, 1)) - 1
points[5:10, :] = np.tile(h, (5, 1)) * points[5:10, :] + np.tile(total_boxes[:, 1], (5, 1)) - 1
if total_boxes.shape[0] > 0:
total_boxes = self.__bbreg(total_boxes.copy(), np.transpose(mv))
pick = self.__nms(total_boxes.copy(), 0.7, 'Min')
total_boxes = total_boxes[pick, :]
points = points[:, pick]
return total_boxes, points