forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
monodepth2.py
190 lines (156 loc) · 5.86 KB
/
monodepth2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import sys
import time
import ailia
import cv2
import matplotlib.pyplot as plt
# from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import numpy as np
# import original modules
sys.path.append('../../util')
# logger
from logging import getLogger # noqa: E402
import webcamera_utils # noqa: E402
from image_utils import imread, load_image # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from arg_utils import get_base_parser, get_savepath, update_parser # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
MODEL_NAME = 'monodepth2_mono+stereo_640x192'
ENC_WEIGHT_PATH = MODEL_NAME + '_enc.onnx'
ENC_MODEL_PATH = MODEL_NAME + '_enc.onnx.prototxt'
DEC_WEIGHT_PATH = MODEL_NAME + '_dec.onnx'
DEC_MODEL_PATH = MODEL_NAME + '_dec.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/monodepth2/'
IMAGE_PATH = 'input.jpg'
SAVE_IMAGE_PATH = 'output.png'
IMAGE_HEIGHT = 192
IMAGE_WIDTH = 640
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('Depth estimation model', IMAGE_PATH, SAVE_IMAGE_PATH)
args = update_parser(parser)
# ======================
# Utils
# ======================
def result_plot(disp, original_width, original_height):
disp = disp.squeeze()
disp_resized = cv2.resize(
disp,
(original_width, original_height),
interpolation=cv2.INTER_LINEAR
)
vmax = np.percentile(disp_resized, 95)
return disp_resized, vmax
# ======================
# Main functions
# ======================
def estimate_from_image():
# net initialize
enc_net = ailia.Net(ENC_MODEL_PATH, ENC_WEIGHT_PATH, env_id=args.env_id)
dec_net = ailia.Net(DEC_MODEL_PATH, DEC_WEIGHT_PATH, env_id=args.env_id)
# input image loop
for image_path in args.input:
logger.info(image_path)
# prepare input data
input_data = load_image(
image_path,
(IMAGE_HEIGHT, IMAGE_WIDTH),
gen_input_ailia=True,
)
org_height, org_width, _ = imread(image_path).shape
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
features = enc_net.predict([input_data])
preds_ailia = dec_net.predict(features)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
features = enc_net.predict([input_data])
preds_ailia = dec_net.predict(features)
# post-processing
disp = preds_ailia[-1]
disp_resized, vmax = result_plot(disp, org_width, org_height)
savepath = get_savepath(args.savepath, image_path, ext='.png')
logger.info(f'saved at : {savepath}')
plt.imsave(savepath, disp_resized, cmap='magma', vmax=vmax)
logger.info('Script finished successfully.')
def estimate_from_video():
# net initialize
enc_net = ailia.Net(ENC_MODEL_PATH, ENC_WEIGHT_PATH, env_id=args.env_id)
dec_net = ailia.Net(DEC_MODEL_PATH, DEC_WEIGHT_PATH, env_id=args.env_id)
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
logger.warning('currently video results output feature '
'is not supported in this model!')
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
save_h, save_w = webcamera_utils.calc_adjust_fsize(
f_h, f_w, IMAGE_HEIGHT, IMAGE_WIDTH
)
# save_w * 2: we stack source frame and estimated heatmap
writer = webcamera_utils.get_writer(args.savepath, save_h, save_w * 2)
else:
writer = None
ret, frame = capture.read()
org_height, org_width, _ = frame.shape
while(True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
_, input_data = webcamera_utils.preprocess_frame(
frame, IMAGE_HEIGHT, IMAGE_WIDTH
)
# encoder
enc_input_blobs = enc_net.get_input_blob_list()
enc_net.set_input_blob_data(input_data, enc_input_blobs[0])
enc_net.update()
features = enc_net.get_results()
# decoder
dec_inputs_blobs = dec_net.get_input_blob_list()
for f_idx in range(len(features)):
dec_net.set_input_blob_data(
features[f_idx], dec_inputs_blobs[f_idx]
)
dec_net.update()
preds_ailia = dec_net.get_results()
# postprocessing
disp = preds_ailia[-1]
disp_resized, vmax = result_plot(disp, org_width, org_height)
plt.imshow(disp_resized, cmap='magma', vmax=vmax)
plt.pause(.01)
if not plt.get_fignums():
break
# save results
# FIXME: How to save plt --> cv2.VideoWriter()
# if writer is not None:
# # put pixel buffer in numpy array
# canvas = FigureCanvas(fig)
# canvas.draw()
# mat = np.array(canvas.renderer._renderer)
# res_img = cv2.cvtColor(mat, cv2.COLOR_RGB2BGR)
# writer.write(res_img)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(ENC_WEIGHT_PATH, ENC_MODEL_PATH, REMOTE_PATH)
check_and_download_models(DEC_WEIGHT_PATH, DEC_MODEL_PATH, REMOTE_PATH)
if args.video is not None:
# video mode
estimate_from_video()
else:
# image mode
estimate_from_image()
if __name__ == '__main__':
main()