- input image (1x3x250x250)
(Extracted from NYU Depth V2 dataset in HDF5 format.)
- output image (1x1x224x224)
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 fast-depth.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the directory of the output file to be saved.
$ python3 fast-depth.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
By adding the --video
option, you can input the video and convert it by the style image.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 fast-depth.py --video VIDEO_PATH
ICRA 2019 "FastDepth: Fast Monocular Depth Estimation on Embedded Systems"
PyTorch
ONNX opset = 11