(Image from https://github.com/open-mmlab/mmfashion/blob/master/demo/imgs/01_4_full.jpg)
Shape : (1, 3, height, width)
- bboxes shape : (objects, bbox)
- labels shape : (objects)
- masks shape : (objects, 28, 28)
- bbox : (left, top, right, bottom, probability)
- probability : [0.0,1.0]
CATEGORY = (
'top', 'skirt', 'leggings', 'dress', 'outer', 'pants', 'bag',
'neckwear', 'headwear', 'eyeglass', 'belt', 'footwear', 'hair',
'skin', 'face'
)
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 mmfashion.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 mmfashion.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 mmfashion.py --video VIDEO_PATH
By specifying the 'large' or 'small' (architecture of the u2net model) with the -pp
option,
the background of the input image would be removed before inference.
This process improves the accuracy of detection.
$ python3 mmfashion.py -pp large
ONNX Runtime
ONNX opset=10