forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathc-3-framework.py
234 lines (179 loc) · 6.86 KB
/
c-3-framework.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import sys, os
import time
import numpy as np
import cv2
from matplotlib import pyplot as plt
import ailia
# import original modules
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser, get_savepath # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from detector_utils import load_image # noqa: E402C
from webcamera_utils import get_capture, get_writer # noqa: E402
# logger
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT_ALEXNET_PATH = 'AlexNet.onnx'
WEIGHT_VGG_PATH = 'VGG.onnx'
WEIGHT_VGG_DECODER_PATH = 'VGG_DECODER.onnx'
WEIGHT_RESNET50_PATH = 'ResNet50.onnx'
WEIGHT_RESNET101_PATH = 'ResNet101.onnx'
WEIGHT_CSRNET_PATH = 'CSRNet.onnx'
WEIGHT_SANET_PATH = 'SANet.onnx'
MODEL_ALEXNET_PATH = 'AlexNet.onnx.prototxt'
MODEL_VGG_PATH = 'VGG.onnx.prototxt'
MODEL_VGG_DECODER_PATH = 'VGG_DECODER.onnx.prototxt'
MODEL_RESNET50_PATH = 'ResNet50.onnx.prototxt'
MODEL_RESNET101_PATH = 'ResNet101.onnx.prototxt'
MODEL_CSRNET_PATH = 'CSRNet.onnx.prototxt'
MODEL_SANET_PATH = 'SANet.onnx.prototxt'
REMOTE_PATH = \
'https://storage.googleapis.com/ailia-models/c-3-framework/'
IMAGE_PATH = 'demo.jpg'
SAVE_IMAGE_PATH = 'output.png'
MAX_IMAGE_WIDTH = 1024 # you can increase this value if you have an enough vram
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'C-3-Framework model', IMAGE_PATH, SAVE_IMAGE_PATH
)
parser.add_argument(
'-m', '--model', type=str, default='resnet50',
choices=(
'alexnet', 'vgg', 'vgg_decoder', 'resnet50', 'resnet101', 'csrnet', 'sanet',
),
help='choice model'
)
args = update_parser(parser)
# ======================
# Secondaty Functions
# ======================
def preprocess(img):
img = img.astype(np.float32) / 255
# normalize
mean = np.array([0.452016860247, 0.447249650955, 0.431981861591])
std = np.array([0.23242045939, 0.224925786257, 0.221840232611])
mean = np.float64(mean.reshape(1, -1))
stdinv = 1 / np.float64(std.reshape(1, -1))
cv2.subtract(img, mean, img) # inplace
cv2.multiply(img, stdinv, img) # inplace
img = img.transpose(2, 0, 1)
img = np.expand_dims(img, axis=0)
return img
# ======================
# Main functions
# ======================
def predict(img, net):
img = preprocess(img)
net.set_input_shape(img.shape)
pred_map = net.predict({'imgs': img})[0]
pred_map = pred_map[0, 0, :, :]
return pred_map
def recognize_from_image(filename, net):
# prepare input data
img = load_image(filename)
logger.info(f'input image shape: {img.shape}')
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
pred_map = predict(img, net)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
pred_map = predict(img, net)
pred = np.sum(pred_map) / 100.0
pred_map = pred_map / np.max(pred_map + 1e-20)
logger.info("predict:"+str(pred))
# plot result
pred_frame = plt.gca()
plt.imshow(pred_map, 'jet')
pred_frame.axes.get_yaxis().set_visible(False)
pred_frame.axes.get_xaxis().set_visible(False)
pred_frame.spines['top'].set_visible(False)
pred_frame.spines['bottom'].set_visible(False)
pred_frame.spines['left'].set_visible(False)
pred_frame.spines['right'].set_visible(False)
savepath = get_savepath(args.savepath, filename)
logger.info(f'saved at : {savepath}')
plt.savefig(savepath, bbox_inches='tight', pad_inches=0, dpi=150)
plt.close()
logger.info('Script finished successfully.')
def recognize_from_video(video, net):
capture = get_capture(video)
from threading import Event
fin = Event()
def handle_close(evt):
fin.set()
def press(event):
if event.key == 'q':
fin.set()
fig = plt.figure()
fig.canvas.mpl_connect('close_event', handle_close)
fig.canvas.mpl_connect('key_press_event', press)
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
if f_w>MAX_IMAGE_WIDTH:
f_w, f_h = int(MAX_IMAGE_WIDTH), int(MAX_IMAGE_WIDTH*f_h/f_w)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
writer = get_writer(args.savepath, f_h, f_w)
else:
writer = None
while not fin.is_set():
ret, frame = capture.read()
if not ret:
continue
frame = cv2.resize(frame, (f_w,f_h))
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pred_map = predict(frame, net)
pred = np.sum(pred_map) / 100.0
pred_map = pred_map / np.max(pred_map + 1e-20)
logger.info("predict:"+str(pred))
# show
pred_frame = plt.gca()
plt.imshow(pred_map, 'jet')
pred_frame.axes.get_yaxis().set_visible(False)
pred_frame.axes.get_xaxis().set_visible(False)
pred_frame.spines['top'].set_visible(False)
pred_frame.spines['bottom'].set_visible(False)
pred_frame.spines['left'].set_visible(False)
pred_frame.spines['right'].set_visible(False)
plt.pause(0.001) # pause a bit so that plots are updated
# save results
if writer is not None:
frame = cv2.cvtColor(pred_map * 255,cv2.COLOR_GRAY2BGR).astype(np.uint8)
writer.write(frame)
capture.release()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
dic_model = {
'alexnet': (WEIGHT_ALEXNET_PATH, MODEL_ALEXNET_PATH),
'vgg': (WEIGHT_VGG_PATH, MODEL_VGG_PATH),
'vgg_decoder': (WEIGHT_VGG_DECODER_PATH, MODEL_VGG_DECODER_PATH),
'resnet50': (WEIGHT_RESNET50_PATH, MODEL_RESNET50_PATH),
'resnet101': (WEIGHT_RESNET101_PATH, MODEL_RESNET101_PATH),
'csrnet': (WEIGHT_CSRNET_PATH, MODEL_CSRNET_PATH),
'sanet': (WEIGHT_SANET_PATH, MODEL_SANET_PATH),
}
weight_path, model_path = dic_model[args.model]
# model files check and download
check_and_download_models(weight_path, model_path, REMOTE_PATH)
# initialize
net = ailia.Net(model_path, weight_path, env_id=args.env_id)
if args.video is not None:
recognize_from_video(args.video, net)
else:
for input_name in args.input:
recognize_from_image(input_name, net)
if __name__ == '__main__':
main()