-
Notifications
You must be signed in to change notification settings - Fork 0
/
GLCM_Features1.m
417 lines (383 loc) · 17.2 KB
/
GLCM_Features1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
function [out] = GLCM_Features1(glcmin,pairs)
%
% GLCM_Features1 helps to calculate the features from the different GLCMs
% that are input to the function. The GLCMs are stored in a i x j x n
% matrix, where n is the number of GLCMs calculated usually due to the
% different orientation and displacements used in the algorithm. Usually
% the values i and j are equal to 'NumLevels' parameter of the GLCM
% computing function graycomatrix(). Note that matlab quantization values
% belong to the set {1,..., NumLevels} and not from {0,...,(NumLevels-1)}
% as provided in some references
% http://www.mathworks.com/access/helpdesk/help/toolbox/images/graycomatrix
% .html
%
% Although there is a function graycoprops() in Matlab Image Processing
% Toolbox that computes four parameters Contrast, Correlation, Energy,
% and Homogeneity. The paper by Haralick suggests a few more parameters
% that are also computed here. The code is not fully vectorized and hence
% is not an efficient implementation but it is easy to add new features
% based on the GLCM using this code. Takes care of 3 dimensional glcms
% (multiple glcms in a single 3D array)
%
% If you find that the values obtained are different from what you expect
% or if you think there is a different formula that needs to be used
% from the ones used in this code please let me know.
% A few questions which I have are listed in the link
% http://www.mathworks.com/matlabcentral/newsreader/view_thread/239608
%
% I plan to submit a vectorized version of the code later and provide
% updates based on replies to the above link and this initial code.
%
% Features computed
% Autocorrelation: [2] (out.autoc)
% Contrast: matlab/[1,2] (out.contr)
% Correlation: matlab (out.corrm)
% Correlation: [1,2] (out.corrp)
% Cluster Prominence: [2] (out.cprom)
% Cluster Shade: [2] (out.cshad)
% Dissimilarity: [2] (out.dissi)
% Energy: matlab / [1,2] (out.energ)
% Entropy: [2] (out.entro)
% Homogeneity: matlab (out.homom)
% Homogeneity: [2] (out.homop)
% Maximum probability: [2] (out.maxpr)
% Sum of sqaures: Variance [1] (out.sosvh)
% Sum average [1] (out.savgh)
% Sum variance [1] (out.svarh)
% Sum entropy [1] (out.senth)
% Difference variance [1] (out.dvarh)
% Difference entropy [1] (out.denth)
% Information measure of correlation1 [1] (out.inf1h)
% Informaiton measure of correlation2 [1] (out.inf2h)
% Inverse difference (INV) is homom [3] (out.homom)
% Inverse difference normalized (INN) [3] (out.indnc)
% Inverse difference moment normalized [3] (out.idmnc)
%
% The maximal correlation coefficient was not calculated due to
% computational instability
% http://murphylab.web.cmu.edu/publications/boland/boland_node26.html
%
% Formulae from MATLAB site (some look different from
% the paper by Haralick but are equivalent and give same results)
% Example formulae:
% Contrast = sum_i(sum_j( (i-j)^2 * p(i,j) ) ) (same in matlab/paper)
% Correlation = sum_i( sum_j( (i - u_i)(j - u_j)p(i,j)/(s_i.s_j) ) ) (m)
% Correlation = sum_i( sum_j( ((ij)p(i,j) - u_x.u_y) / (s_x.s_y) ) ) (p[2])
% Energy = sum_i( sum_j( p(i,j)^2 ) ) (same in matlab/paper)
% Homogeneity = sum_i( sum_j( p(i,j) / (1 + |i-j|) ) ) (as in matlab)
% Homogeneity = sum_i( sum_j( p(i,j) / (1 + (i-j)^2) ) ) (as in paper)
%
% Where:
% u_i = u_x = sum_i( sum_j( i.p(i,j) ) ) (in paper [2])
% u_j = u_y = sum_i( sum_j( j.p(i,j) ) ) (in paper [2])
% s_i = s_x = sum_i( sum_j( (i - u_x)^2.p(i,j) ) ) (in paper [2])
% s_j = s_y = sum_i( sum_j( (j - u_y)^2.p(i,j) ) ) (in paper [2])
%
%
% Normalize the glcm:
% Compute the sum of all the values in each glcm in the array and divide
% each element by it sum
%
% Haralick uses 'Symmetric' = true in computing the glcm
% There is no Symmetric flag in the Matlab version I use hence
% I add the diagonally opposite pairs to obtain the Haralick glcm
% Here it is assumed that the diagonally opposite orientations are paired
% one after the other in the matrix
% If the above assumption is true with respect to the input glcm then
% setting the flag 'pairs' to 1 will compute the final glcms that would result
% by setting 'Symmetric' to true. If your glcm is computed using the
% Matlab version with 'Symmetric' flag you can set the flag 'pairs' to 0
%
% References:
% 1. R. M. Haralick, K. Shanmugam, and I. Dinstein, Textural Features of
% Image Classification, IEEE Transactions on Systems, Man and Cybernetics,
% vol. SMC-3, no. 6, Nov. 1973
% 2. L. Soh and C. Tsatsoulis, Texture Analysis of SAR Sea Ice Imagery
% Using Gray Level Co-Occurrence Matrices, IEEE Transactions on Geoscience
% and Remote Sensing, vol. 37, no. 2, March 1999.
% 3. D A. Clausi, An analysis of co-occurrence texture statistics as a
% function of grey level quantization, Can. J. Remote Sensing, vol. 28, no.
% 1, pp. 45-62, 2002
% 4. http://murphylab.web.cmu.edu/publications/boland/boland_node26.html
%
%
% Example:
%
% Usage is similar to graycoprops() but needs extra parameter 'pairs' apart
% from the GLCM as input
% I = imread('circuit.tif');
% GLCM2 = graycomatrix(I,'Offset',[2 0;0 2]);
% stats = GLCM_Features1(GLCM2,0)
% The output is a structure containing all the parameters for the different
% GLCMs
%
% [Avinash Uppuluri: [email protected]: Last modified: 11/20/08]
% If 'pairs' not entered: set pairs to 0
if ((nargin > 2) || (nargin == 0))
error('Too many or too few input arguments. Enter GLCM and pairs.');
elseif ( (nargin == 2) )
if ((size(glcmin,1) <= 1) || (size(glcmin,2) <= 1))
error('The GLCM should be a 2-D or 3-D matrix.');
elseif ( size(glcmin,1) ~= size(glcmin,2) )
error('Each GLCM should be square with NumLevels rows and NumLevels cols');
end
elseif (nargin == 1) % only GLCM is entered
pairs = 0; % default is numbers and input 1 for percentage
if ((size(glcmin,1) <= 1) || (size(glcmin,2) <= 1))
error('The GLCM should be a 2-D or 3-D matrix.');
elseif ( size(glcmin,1) ~= size(glcmin,2) )
error('Each GLCM should be square with NumLevels rows and NumLevels cols');
end
end
format long e
if (pairs == 1)
newn = 1;
for nglcm = 1:2:size(glcmin,3)
glcm(:,:,newn) = glcmin(:,:,nglcm) + glcmin(:,:,nglcm+1);
newn = newn + 1;
end
elseif (pairs == 0)
glcm = glcmin;
end
size_glcm_1 = size(glcm,1);
size_glcm_2 = size(glcm,2);
size_glcm_3 = size(glcm,3);
% checked
out.autoc = zeros(1,size_glcm_3); % Autocorrelation: [2]
out.contr = zeros(1,size_glcm_3); % Contrast: matlab/[1,2]
out.corrm = zeros(1,size_glcm_3); % Correlation: matlab
out.corrp = zeros(1,size_glcm_3); % Correlation: [1,2]
out.cprom = zeros(1,size_glcm_3); % Cluster Prominence: [2]
out.cshad = zeros(1,size_glcm_3); % Cluster Shade: [2]
out.dissi = zeros(1,size_glcm_3); % Dissimilarity: [2]
out.energ = zeros(1,size_glcm_3); % Energy: matlab / [1,2]
out.entro = zeros(1,size_glcm_3); % Entropy: [2]
out.homom = zeros(1,size_glcm_3); % Homogeneity: matlab
out.homop = zeros(1,size_glcm_3); % Homogeneity: [2]
out.maxpr = zeros(1,size_glcm_3); % Maximum probability: [2]
out.sosvh = zeros(1,size_glcm_3); % Sum of sqaures: Variance [1]
out.savgh = zeros(1,size_glcm_3); % Sum average [1]
out.svarh = zeros(1,size_glcm_3); % Sum variance [1]
out.senth = zeros(1,size_glcm_3); % Sum entropy [1]
out.dvarh = zeros(1,size_glcm_3); % Difference variance [4]
%out.dvarh2 = zeros(1,size_glcm_3); % Difference variance [1]
out.denth = zeros(1,size_glcm_3); % Difference entropy [1]
out.inf1h = zeros(1,size_glcm_3); % Information measure of correlation1 [1]
out.inf2h = zeros(1,size_glcm_3); % Informaiton measure of correlation2 [1]
%out.mxcch = zeros(1,size_glcm_3);% maximal correlation coefficient [1]
%out.invdc = zeros(1,size_glcm_3);% Inverse difference (INV) is homom [3]
out.indnc = zeros(1,size_glcm_3); % Inverse difference normalized (INN) [3]
out.idmnc = zeros(1,size_glcm_3); % Inverse difference moment normalized [3]
% correlation with alternate definition of u and s
%out.corrm2 = zeros(1,size_glcm_3); % Correlation: matlab
%out.corrp2 = zeros(1,size_glcm_3); % Correlation: [1,2]
glcm_sum = zeros(size_glcm_3,1);
glcm_mean = zeros(size_glcm_3,1);
glcm_var = zeros(size_glcm_3,1);
% http://www.fp.ucalgary.ca/mhallbey/glcm_mean.htm confuses the range of
% i and j used in calculating the means and standard deviations.
% As of now I am not sure if the range of i and j should be [1:Ng] or
% [0:Ng-1]. I am working on obtaining the values of mean and std that get
% the values of correlation that are provided by matlab.
u_x = zeros(size_glcm_3,1);
u_y = zeros(size_glcm_3,1);
s_x = zeros(size_glcm_3,1);
s_y = zeros(size_glcm_3,1);
% % alternate values of u and s
% u_x2 = zeros(size_glcm_3,1);
% u_y2 = zeros(size_glcm_3,1);
% s_x2 = zeros(size_glcm_3,1);
% s_y2 = zeros(size_glcm_3,1);
% checked p_x p_y p_xplusy p_xminusy
p_x = zeros(size_glcm_1,size_glcm_3); % Ng x #glcms[1]
p_y = zeros(size_glcm_2,size_glcm_3); % Ng x #glcms[1]
p_xplusy = zeros((size_glcm_1*2 - 1),size_glcm_3); %[1]
p_xminusy = zeros((size_glcm_1),size_glcm_3); %[1]
% checked hxy hxy1 hxy2 hx hy
hxy = zeros(size_glcm_3,1);
hxy1 = zeros(size_glcm_3,1);
hx = zeros(size_glcm_3,1);
hy = zeros(size_glcm_3,1);
hxy2 = zeros(size_glcm_3,1);
%Q = zeros(size(glcm));
for k = 1:size_glcm_3 % number glcms
glcm_sum(k) = sum(sum(glcm(:,:,k)));
glcm(:,:,k) = glcm(:,:,k)./glcm_sum(k); % Normalize each glcm
glcm_mean(k) = mean2(glcm(:,:,k)); % compute mean after norm
glcm_var(k) = (std2(glcm(:,:,k)))^2;
for i = 1:size_glcm_1
for j = 1:size_glcm_2
out.contr(k) = out.contr(k) + (abs(i - j))^2.*glcm(i,j,k);
out.dissi(k) = out.dissi(k) + (abs(i - j)*glcm(i,j,k));
out.energ(k) = out.energ(k) + (glcm(i,j,k).^2);
out.entro(k) = out.entro(k) - (glcm(i,j,k)*log(glcm(i,j,k) + eps));
out.homom(k) = out.homom(k) + (glcm(i,j,k)/( 1 + abs(i-j) ));
out.homop(k) = out.homop(k) + (glcm(i,j,k)/( 1 + (i - j)^2));
% [1] explains sum of squares variance with a mean value;
% the exact definition for mean has not been provided in
% the reference: I use the mean of the entire normalized glcm
out.sosvh(k) = out.sosvh(k) + glcm(i,j,k)*((i - glcm_mean(k))^2);
%out.invdc(k) = out.homom(k);
out.indnc(k) = out.indnc(k) + (glcm(i,j,k)/( 1 + (abs(i-j)/size_glcm_1) ));
out.idmnc(k) = out.idmnc(k) + (glcm(i,j,k)/( 1 + ((i - j)/size_glcm_1)^2));
u_x(k) = u_x(k) + (i)*glcm(i,j,k); % changed 10/26/08
u_y(k) = u_y(k) + (j)*glcm(i,j,k); % changed 10/26/08
% code requires that Nx = Ny
% the values of the grey levels range from 1 to (Ng)
end
end
out.maxpr(k) = max(max(glcm(:,:,k)));
end
% glcms have been normalized:
% The contrast has been computed for each glcm in the 3D matrix
% (tested) gives similar results to the matlab function
for k = 1:size_glcm_3
for i = 1:size_glcm_1
for j = 1:size_glcm_2
p_x(i,k) = p_x(i,k) + glcm(i,j,k);
p_y(i,k) = p_y(i,k) + glcm(j,i,k); % taking i for j and j for i
if (ismember((i + j),[2:2*size_glcm_1]))
p_xplusy((i+j)-1,k) = p_xplusy((i+j)-1,k) + glcm(i,j,k);
end
if (ismember(abs(i-j),[0:(size_glcm_1-1)]))
p_xminusy((abs(i-j))+1,k) = p_xminusy((abs(i-j))+1,k) +...
glcm(i,j,k);
end
end
end
% % consider u_x and u_y and s_x and s_y as means and standard deviations
% % of p_x and p_y
% u_x2(k) = mean(p_x(:,k));
% u_y2(k) = mean(p_y(:,k));
% s_x2(k) = std(p_x(:,k));
% s_y2(k) = std(p_y(:,k));
end
% marginal probabilities are now available [1]
% p_xminusy has +1 in index for matlab (no 0 index)
% computing sum average, sum variance and sum entropy:
for k = 1:(size_glcm_3)
for i = 1:(2*(size_glcm_1)-1)
out.savgh(k) = out.savgh(k) + (i+1)*p_xplusy(i,k);
% the summation for savgh is for i from 2 to 2*Ng hence (i+1)
out.senth(k) = out.senth(k) - (p_xplusy(i,k)*log(p_xplusy(i,k) + eps));
end
end
% compute sum variance with the help of sum entropy
for k = 1:(size_glcm_3)
for i = 1:(2*(size_glcm_1)-1)
out.svarh(k) = out.svarh(k) + (((i+1) - out.senth(k))^2)*p_xplusy(i,k);
% the summation for savgh is for i from 2 to 2*Ng hence (i+1)
end
end
% compute difference variance, difference entropy,
for k = 1:size_glcm_3
% out.dvarh2(k) = var(p_xminusy(:,k));
% but using the formula in
% http://murphylab.web.cmu.edu/publications/boland/boland_node26.html
% we have for dvarh
for i = 0:(size_glcm_1-1)
out.denth(k) = out.denth(k) - (p_xminusy(i+1,k)*log(p_xminusy(i+1,k) + eps));
out.dvarh(k) = out.dvarh(k) + (i^2)*p_xminusy(i+1,k);
end
end
% compute information measure of correlation(1,2) [1]
for k = 1:size_glcm_3
hxy(k) = out.entro(k);
for i = 1:size_glcm_1
for j = 1:size_glcm_2
hxy1(k) = hxy1(k) - (glcm(i,j,k)*log(p_x(i,k)*p_y(j,k) + eps));
hxy2(k) = hxy2(k) - (p_x(i,k)*p_y(j,k)*log(p_x(i,k)*p_y(j,k) + eps));
% for Qind = 1:(size_glcm_1)
% Q(i,j,k) = Q(i,j,k) +...
% ( glcm(i,Qind,k)*glcm(j,Qind,k) / (p_x(i,k)*p_y(Qind,k)) );
% end
end
hx(k) = hx(k) - (p_x(i,k)*log(p_x(i,k) + eps));
hy(k) = hy(k) - (p_y(i,k)*log(p_y(i,k) + eps));
end
out.inf1h(k) = ( hxy(k) - hxy1(k) ) / ( max([hx(k),hy(k)]) );
out.inf2h(k) = ( 1 - exp( -2*( hxy2(k) - hxy(k) ) ) )^0.5;
% eig_Q(k,:) = eig(Q(:,:,k));
% sort_eig(k,:)= sort(eig_Q(k,:),'descend');
% out.mxcch(k) = sort_eig(k,2)^0.5;
% The maximal correlation coefficient was not calculated due to
% computational instability
% http://murphylab.web.cmu.edu/publications/boland/boland_node26.html
end
corm = zeros(size_glcm_3,1);
corp = zeros(size_glcm_3,1);
% using http://www.fp.ucalgary.ca/mhallbey/glcm_variance.htm for s_x s_y
for k = 1:size_glcm_3
for i = 1:size_glcm_1
for j = 1:size_glcm_2
s_x(k) = s_x(k) + (((i) - u_x(k))^2)*glcm(i,j,k);
s_y(k) = s_y(k) + (((j) - u_y(k))^2)*glcm(i,j,k);
corp(k) = corp(k) + ((i)*(j)*glcm(i,j,k));
corm(k) = corm(k) + (((i) - u_x(k))*((j) - u_y(k))*glcm(i,j,k));
out.cprom(k) = out.cprom(k) + (((i + j - u_x(k) - u_y(k))^4)*...
glcm(i,j,k));
out.cshad(k) = out.cshad(k) + (((i + j - u_x(k) - u_y(k))^3)*...
glcm(i,j,k));
end
end
% using http://www.fp.ucalgary.ca/mhallbey/glcm_variance.htm for s_x
% s_y : This solves the difference in value of correlation and might be
% the right value of standard deviations required
% According to this website there is a typo in [2] which provides
% values of variance instead of the standard deviation hence a square
% root is required as done below:
s_x(k) = s_x(k) ^ 0.5;
s_y(k) = s_y(k) ^ 0.5;
out.autoc(k) = corp(k);
out.corrp(k) = (corp(k) - u_x(k)*u_y(k))/(s_x(k)*s_y(k));
out.corrm(k) = corm(k) / (s_x(k)*s_y(k));
% % alternate values of u and s
% out.corrp2(k) = (corp(k) - u_x2(k)*u_y2(k))/(s_x2(k)*s_y2(k));
% out.corrm2(k) = corm(k) / (s_x2(k)*s_y2(k));
end
% Here the formula in the paper out.corrp and the formula in matlab
% out.corrm are equivalent as confirmed by the similar results obtained
% % The papers have a slightly different formular for Contrast
% % I have tested here to find this formula in the papers provides the
% % same results as the formula provided by the matlab function for
% % Contrast (Hence this part has been commented)
% out.contrp = zeros(size_glcm_3,1);
% contp = 0;
% Ng = size_glcm_1;
% for k = 1:size_glcm_3
% for n = 0:(Ng-1)
% for i = 1:Ng
% for j = 1:Ng
% if (abs(i-j) == n)
% contp = contp + glcm(i,j,k);
% end
% end
% end
% out.contrp(k) = out.contrp(k) + n^2*contp;
% contp = 0;
% end
%
% end
% GLCM Features (Soh, 1999; Haralick, 1973; Clausi 2002)
% f1. Uniformity / Energy / Angular Second Moment (done)
% f2. Entropy (done)
% f3. Dissimilarity (done)
% f4. Contrast / Inertia (done)
% f5. Inverse difference
% f6. correlation
% f7. Homogeneity / Inverse difference moment
% f8. Autocorrelation
% f9. Cluster Shade
% f10. Cluster Prominence
% f11. Maximum probability
% f12. Sum of Squares
% f13. Sum Average
% f14. Sum Variance
% f15. Sum Entropy
% f16. Difference variance
% f17. Difference entropy
% f18. Information measures of correlation (1)
% f19. Information measures of correlation (2)
% f20. Maximal correlation coefficient
% f21. Inverse difference normalized (INN)
% f22. Inverse difference moment normalized (IDN)