-
Notifications
You must be signed in to change notification settings - Fork 0
/
temp-5.sh
56 lines (46 loc) · 4.77 KB
/
temp-5.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss cross_entropy
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss NLL+MDCA --beta 1
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss NLL+MDCA --beta 5
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss NLL+MDCA --beta 10
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss NLL+MDCA --beta 15
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss NLL+MDCA --beta 20
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss FL --gamma 1.0
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss FL+MDCA --beta 1 --gamma 1.0
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss FL+MDCA --beta 5 --gamma 1.0
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss FL+MDCA --beta 10 --gamma 1.0
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss FL+MDCA --beta 15 --gamma 1.0
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss FL+MDCA --beta 20 --gamma 1.0
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss FL --gamma 2.0
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss FL+MDCA --beta 1 --gamma 2.0
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss FL+MDCA --beta 5 --gamma 2.0
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss FL+MDCA --beta 10 --gamma 2.0
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss FL+MDCA --beta 15 --gamma 2.0
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss FL+MDCA --beta 20 --gamma 2.0
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss FL --gamma 3.0
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss FL+MDCA --beta 1 --gamma 3.0
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss FL+MDCA --beta 5 --gamma 3.0
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss FL+MDCA --beta 10 --gamma 3.0
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss FL+MDCA --beta 15 --gamma 3.0
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss FL+MDCA --beta 20 --gamma 3.0
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss LS --alpha 0.01
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss LS+MDCA --beta 1 --alpha 0.01
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss LS+MDCA --beta 5 --alpha 0.01
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss LS+MDCA --beta 10 --alpha 0.01
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss LS+MDCA --beta 15 --alpha 0.01
python train_imbalanced.py --dataset im_cifar10 --model resnet32 --schedule-steps 80 120 --epochs 160 --imbalance 0.01 --loss LS+MDCA --beta 20 --alpha 0.01
export CUDA_VISIBLE_DEVICES=0,1
screen bash -c \
"python3 aucm.py >> aucm.txt
"
export CUDA_VISIBLE_DEVICES=6,7
screen bash -c \
"python3 aucm_mdca.py >> aucm_mdca.txt
"
export CUDA_VISIBLE_DEVICES=6
screen bash -c \
"python pacscheck.py 960 1200
"
export CUDA_VISIBLE_DEVICES=7
screen bash -c \
"python pacscheck.py 1200 1440
"