-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatmo_spline.h
475 lines (427 loc) · 13.4 KB
/
atmo_spline.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
#pragma once
/*
* spline.h
*
* simple cubic spline interpolation library without external
* dependencies
*
* ---------------------------------------------------------------------
* Copyright (C) 2011, 2014 Tino Kluge (ttk448 at gmail.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
* ---------------------------------------------------------------------
*
*/
#ifndef TK_SPLINE_H
#define TK_SPLINE_H
#include <cstdio>
#include <cassert>
#include <vector>
#include <algorithm>
// unnamed namespace only because the implementation is in this
// header file and we don't want to export symbols to the obj files
namespace
{
namespace tk
{
// band matrix solver
class band_matrix
{
private:
std::vector< std::vector<double> > m_upper; // upper band
std::vector< std::vector<double> > m_lower; // lower band
public:
band_matrix() {}; // constructor
band_matrix(int dim, int n_u, int n_l); // constructor
~band_matrix() {}; // destructor
void resize(int dim, int n_u, int n_l); // init with dim,n_u,n_l
int dim() const; // matrix dimension
int num_upper() const
{
return m_upper.size() - 1;
}
int num_lower() const
{
return m_lower.size() - 1;
}
// access operator
double & operator () (int i, int j); // write
double operator () (int i, int j) const; // read
// we can store an additional diogonal (in m_lower)
double& saved_diag(int i);
double saved_diag(int i) const;
void lu_decompose();
std::vector<double> r_solve(const std::vector<double>& b) const;
std::vector<double> l_solve(const std::vector<double>& b) const;
std::vector<double> lu_solve(const std::vector<double>& b,
bool is_lu_decomposed = false);
};
// spline interpolation
class spline
{
public:
enum bd_type {
first_deriv = 1,
second_deriv = 2
};
private:
std::vector<double> m_x, m_y; // x,y coordinates of points
// interpolation parameters
// f(x) = a*(x-x_i)^3 + b*(x-x_i)^2 + c*(x-x_i) + y_i
std::vector<double> m_a, m_b, m_c; // spline coefficients
double m_b0, m_c0; // for left extrapol
bd_type m_left, m_right;
double m_left_value, m_right_value;
bool m_force_linear_extrapolation;
public:
// set default boundary condition to be zero curvature at both ends
spline() : m_left(second_deriv), m_right(second_deriv),
m_left_value(0.0), m_right_value(0.0),
m_force_linear_extrapolation(false)
{
;
}
// optional, but if called it has to come be before set_points()
void set_boundary(bd_type left, double left_value,
bd_type right, double right_value,
bool force_linear_extrapolation = false);
void set_points(const std::vector<double>& x,
const std::vector<double>& y, bool cubic_spline = true);
double operator() (double x) const;
double deriv(int order, double x) const;
};
// ---------------------------------------------------------------------
// implementation part, which could be separated into a cpp file
// ---------------------------------------------------------------------
// band_matrix implementation
// -------------------------
band_matrix::band_matrix(int dim, int n_u, int n_l)
{
resize(dim, n_u, n_l);
}
void band_matrix::resize(int dim, int n_u, int n_l)
{
assert(dim > 0);
assert(n_u >= 0);
assert(n_l >= 0);
m_upper.resize(n_u + 1);
m_lower.resize(n_l + 1);
for (size_t i = 0; i < m_upper.size(); i++) {
m_upper[i].resize(dim);
}
for (size_t i = 0; i < m_lower.size(); i++) {
m_lower[i].resize(dim);
}
}
int band_matrix::dim() const
{
if (m_upper.size() > 0) {
return m_upper[0].size();
}
else {
return 0;
}
}
// defines the new operator (), so that we can access the elements
// by A(i,j), index going from i=0,...,dim()-1
double & band_matrix::operator () (int i, int j)
{
int k = j - i; // what band is the entry
assert((i >= 0) && (i < dim()) && (j >= 0) && (j < dim()));
assert((-num_lower() <= k) && (k <= num_upper()));
// k=0 -> diogonal, k<0 lower left part, k>0 upper right part
if (k >= 0) return m_upper[k][i];
else return m_lower[-k][i];
}
double band_matrix::operator () (int i, int j) const
{
int k = j - i; // what band is the entry
assert((i >= 0) && (i < dim()) && (j >= 0) && (j < dim()));
assert((-num_lower() <= k) && (k <= num_upper()));
// k=0 -> diogonal, k<0 lower left part, k>0 upper right part
if (k >= 0) return m_upper[k][i];
else return m_lower[-k][i];
}
// second diag (used in LU decomposition), saved in m_lower
double band_matrix::saved_diag(int i) const
{
assert((i >= 0) && (i < dim()));
return m_lower[0][i];
}
double & band_matrix::saved_diag(int i)
{
assert((i >= 0) && (i < dim()));
return m_lower[0][i];
}
// LR-Decomposition of a band matrix
void band_matrix::lu_decompose()
{
int i_max, j_max;
int j_min;
double x;
// preconditioning
// normalize column i so that a_ii=1
for (int i = 0; i < this->dim(); i++) {
assert(this->operator()(i, i) != 0.0);
this->saved_diag(i) = 1.0 / this->operator()(i, i);
j_min = std::max(0, i - this->num_lower());
j_max = std::min(this->dim() - 1, i + this->num_upper());
for (int j = j_min; j <= j_max; j++) {
this->operator()(i, j) *= this->saved_diag(i);
}
this->operator()(i, i) = 1.0; // prevents rounding errors
}
// Gauss LR-Decomposition
for (int k = 0; k < this->dim(); k++) {
i_max = std::min(this->dim() - 1, k + this->num_lower()); // num_lower not a mistake!
for (int i = k + 1; i <= i_max; i++) {
assert(this->operator()(k, k) != 0.0);
x = -this->operator()(i, k) / this->operator()(k, k);
this->operator()(i, k) = -x; // assembly part of L
j_max = std::min(this->dim() - 1, k + this->num_upper());
for (int j = k + 1; j <= j_max; j++) {
// assembly part of R
this->operator()(i, j) = this->operator()(i, j) + x * this->operator()(k, j);
}
}
}
}
// solves Ly=b
std::vector<double> band_matrix::l_solve(const std::vector<double>& b) const
{
assert(this->dim() == (int)b.size());
std::vector<double> x(this->dim());
int j_start;
double sum;
for (int i = 0; i < this->dim(); i++) {
sum = 0;
j_start = std::max(0, i - this->num_lower());
for (int j = j_start; j < i; j++) sum += this->operator()(i, j)*x[j];
x[i] = (b[i] * this->saved_diag(i)) - sum;
}
return x;
}
// solves Rx=y
std::vector<double> band_matrix::r_solve(const std::vector<double>& b) const
{
assert(this->dim() == (int)b.size());
std::vector<double> x(this->dim());
int j_stop;
double sum;
for (int i = this->dim() - 1; i >= 0; i--) {
sum = 0;
j_stop = std::min(this->dim() - 1, i + this->num_upper());
for (int j = i + 1; j <= j_stop; j++) sum += this->operator()(i, j)*x[j];
x[i] = (b[i] - sum) / this->operator()(i, i);
}
return x;
}
std::vector<double> band_matrix::lu_solve(const std::vector<double>& b,
bool is_lu_decomposed)
{
assert(this->dim() == (int)b.size());
std::vector<double> x, y;
if (is_lu_decomposed == false) {
this->lu_decompose();
}
y = this->l_solve(b);
x = this->r_solve(y);
return x;
}
// spline implementation
// -----------------------
void spline::set_boundary(spline::bd_type left, double left_value,
spline::bd_type right, double right_value,
bool force_linear_extrapolation)
{
assert(m_x.size() == 0); // set_points() must not have happened yet
m_left = left;
m_right = right;
m_left_value = left_value;
m_right_value = right_value;
m_force_linear_extrapolation = force_linear_extrapolation;
}
void spline::set_points(const std::vector<double>& x,
const std::vector<double>& y, bool cubic_spline)
{
assert(x.size() == y.size());
assert(x.size() > 2);
m_x = x;
m_y = y;
int n = x.size();
// TODO: maybe sort x and y, rather than returning an error
for (int i = 0; i < n - 1; i++) {
assert(m_x[i] < m_x[i + 1]);
}
if (cubic_spline == true) { // cubic spline interpolation
// setting up the matrix and right hand side of the equation system
// for the parameters b[]
band_matrix A(n, 1, 1);
std::vector<double> rhs(n);
for (int i = 1; i < n - 1; i++) {
A(i, i - 1) = 1.0 / 3.0*(x[i] - x[i - 1]);
A(i, i) = 2.0 / 3.0*(x[i + 1] - x[i - 1]);
A(i, i + 1) = 1.0 / 3.0*(x[i + 1] - x[i]);
rhs[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i]) - (y[i] - y[i - 1]) / (x[i] - x[i - 1]);
}
// boundary conditions
if (m_left == spline::second_deriv) {
// 2*b[0] = f''
A(0, 0) = 2.0;
A(0, 1) = 0.0;
rhs[0] = m_left_value;
}
else if (m_left == spline::first_deriv) {
// c[0] = f', needs to be re-expressed in terms of b:
// (2b[0]+b[1])(x[1]-x[0]) = 3 ((y[1]-y[0])/(x[1]-x[0]) - f')
A(0, 0) = 2.0*(x[1] - x[0]);
A(0, 1) = 1.0*(x[1] - x[0]);
rhs[0] = 3.0*((y[1] - y[0]) / (x[1] - x[0]) - m_left_value);
}
else {
assert(false);
}
if (m_right == spline::second_deriv) {
// 2*b[n-1] = f''
A(n - 1, n - 1) = 2.0;
A(n - 1, n - 2) = 0.0;
rhs[n - 1] = m_right_value;
}
else if (m_right == spline::first_deriv) {
// c[n-1] = f', needs to be re-expressed in terms of b:
// (b[n-2]+2b[n-1])(x[n-1]-x[n-2])
// = 3 (f' - (y[n-1]-y[n-2])/(x[n-1]-x[n-2]))
A(n - 1, n - 1) = 2.0*(x[n - 1] - x[n - 2]);
A(n - 1, n - 2) = 1.0*(x[n - 1] - x[n - 2]);
rhs[n - 1] = 3.0*(m_right_value - (y[n - 1] - y[n - 2]) / (x[n - 1] - x[n - 2]));
}
else {
assert(false);
}
// solve the equation system to obtain the parameters b[]
m_b = A.lu_solve(rhs);
// calculate parameters a[] and c[] based on b[]
m_a.resize(n);
m_c.resize(n);
for (int i = 0; i < n - 1; i++) {
m_a[i] = 1.0 / 3.0*(m_b[i + 1] - m_b[i]) / (x[i + 1] - x[i]);
m_c[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i])
- 1.0 / 3.0*(2.0*m_b[i] + m_b[i + 1])*(x[i + 1] - x[i]);
}
}
else { // linear interpolation
m_a.resize(n);
m_b.resize(n);
m_c.resize(n);
for (int i = 0; i < n - 1; i++) {
m_a[i] = 0.0;
m_b[i] = 0.0;
m_c[i] = (m_y[i + 1] - m_y[i]) / (m_x[i + 1] - m_x[i]);
}
}
// for left extrapolation coefficients
m_b0 = (m_force_linear_extrapolation == false) ? m_b[0] : 0.0;
m_c0 = m_c[0];
// for the right extrapolation coefficients
// f_{n-1}(x) = b*(x-x_{n-1})^2 + c*(x-x_{n-1}) + y_{n-1}
double h = x[n - 1] - x[n - 2];
// m_b[n-1] is determined by the boundary condition
m_a[n - 1] = 0.0;
m_c[n - 1] = 3.0*m_a[n - 2] * h*h + 2.0*m_b[n - 2] * h + m_c[n - 2]; // = f'_{n-2}(x_{n-1})
if (m_force_linear_extrapolation == true)
m_b[n - 1] = 0.0;
}
double spline::operator() (double x) const
{
size_t n = m_x.size();
// find the closest point m_x[idx] < x, idx=0 even if x<m_x[0]
std::vector<double>::const_iterator it;
it = std::lower_bound(m_x.begin(), m_x.end(), x);
int idx = std::max(int(it - m_x.begin()) - 1, 0);
double h = x - m_x[idx];
double interpol;
if (x < m_x[0]) {
// extrapolation to the left
interpol = (m_b0*h + m_c0)*h + m_y[0];
}
else if (x > m_x[n - 1]) {
// extrapolation to the right
interpol = (m_b[n - 1] * h + m_c[n - 1])*h + m_y[n - 1];
}
else {
// interpolation
interpol = ((m_a[idx] * h + m_b[idx])*h + m_c[idx])*h + m_y[idx];
}
return interpol;
}
double spline::deriv(int order, double x) const
{
assert(order > 0);
size_t n = m_x.size();
// find the closest point m_x[idx] < x, idx=0 even if x<m_x[0]
std::vector<double>::const_iterator it;
it = std::lower_bound(m_x.begin(), m_x.end(), x);
int idx = std::max(int(it - m_x.begin()) - 1, 0);
double h = x - m_x[idx];
double interpol;
if (x < m_x[0]) {
// extrapolation to the left
switch (order) {
case 1:
interpol = 2.0*m_b0*h + m_c0;
break;
case 2:
interpol = 2.0*m_b0*h;
break;
default:
interpol = 0.0;
break;
}
}
else if (x > m_x[n - 1]) {
// extrapolation to the right
switch (order) {
case 1:
interpol = 2.0*m_b[n - 1] * h + m_c[n - 1];
break;
case 2:
interpol = 2.0*m_b[n - 1];
break;
default:
interpol = 0.0;
break;
}
}
else {
// interpolation
switch (order) {
case 1:
interpol = (3.0*m_a[idx] * h + 2.0*m_b[idx])*h + m_c[idx];
break;
case 2:
interpol = 6.0*m_a[idx] * h + 2.0*m_b[idx];
break;
case 3:
interpol = 6.0*m_a[idx];
break;
default:
interpol = 0.0;
break;
}
}
return interpol;
}
} // namespace tk
} // namespace
#endif /* TK_SPLINE_H */