Skip to content

Latest commit

 

History

History
133 lines (114 loc) · 5.23 KB

README.md

File metadata and controls

133 lines (114 loc) · 5.23 KB

DOI

fig1 interp

Setup & Running Source Code

Developed and tested on Red Hat Linux 7.

Installation Steps

  • also see more detailed information here

Containers

  • Set-up compute environment with containers:
    • Install Singularity
    • Tested with Singularity 3.5.3
    • Need CUDA 8.0+ compatible GPU and drivers (e.g. P100)
    • Pull Singularity container .sif image file from Singularity Hub
    • singularity pull shub://andrewjUTSW/openLCH:latest
    • Test GPU singularity exec --nv --cleanenv ./openLCH_latest.sif nvidia-smi

Download and Prepare Example Data

  • Download 2000 image sample data set
    • curl https://cloud.biohpc.swmed.edu/index.php/s/FqZSqoKfHii6ony/download --output sample2000.tar.gz
    • unzip data
      • tar xvzf ./sample2000.tar.gz
    • Included are a random sample set of 256x256 cell images
    • Create image file list ls `pwd`/data2/*.png > imagePathList.txt
    • Full data set provided here:
    • Download previously trained autoencoder .t7 file
      • curl https://cloud.biohpc.swmed.edu/index.php/s/YAQQtpwTX2NKS89/download --output autoencoder_eval_56zTRAINED.t7

Run Provided Example Scripts

Linear interpolation between two reconstructed cell images using previously trained AAE

	singularity exec --nv --cleanenv openLCH_latest.sif /bin/bash -c 'cd ./code; \
	LCH_PATH=YOUR_CODE_PATH_HERE; \
	th -i ./interp_LatentSpace_LCH_MD_single_2.lua \
	-imPathFile $LCH_PATH/imagePathList.txt \
	-autoencoder $LCH_PATH/autoencoder_eval_56zTRAINED.t7 \
	-outDir $LCH_PATH/output/interpOut/ \
	-gpu 1 \
	-img1 51 \
	-img2 81'

interp2

Train new AAE

	singularity exec --nv --cleanenv openLCH_latest.sif /bin/bash -c 'cd ./code; \
	LCH_PATH=YOUR_CODE_PATH_HERE; \
	th ./run_mainLCH_AAE_Train_2.lua \
	-modelname AAEconv_CLEAN \
	-nLatentDims 56 \
	-imsize 256 \
	-imPathFile $LCH_PATH/imagePathList.txt \
	-savedir $LCH_PATH/outputNew/ \
	-epochs 100 \
	-gpu 1' 

Extract latent embeddings

	singularity exec --nv --cleanenv openLCH_latest.sif /bin/bash -c 'cd ./code; \
	LCH_PATH=YOUR_CODE_PATH_HERE; \
	th ./call_DynComputeEmbeddingsRobust_2.lua \
	-autoencoder $LCH_PATH/outputNew/autoencoder_eval.t7 \
	-imsize 256 \
	-dataProvider DynDataProviderRobust_2 \
	-imPathFile $LCH_PATH/imagePathList.txt \
	-gpu 2 \
	-embeddingFile $LCH_PATH/outputNew/embeddings_sampleTest.csv'

dr

Explore latent space by shifting embedding vector values (one dimension at a time) of an input cell image and reconstructing shifted synthetic cell images

	singularity exec --nv openLCH_latest.sif /bin/bash -c 'cd ./code; \
	LCH_PATH=YOUR_CODE_PATH_HERE; \
	th -i ./exploreZ_LatentSpace_LCH_single_2.lua \
	-imPathFile $LCH_PATH/imagePathList.txt \
	-autoencoder $LCH_PATH/autoencoder_eval_56zTRAINED.t7 \
	-outDir $LCH_PATH/outputOrig/zExploreOut \
	-img1 10 \
	-uR 1 \
	-numSteps 6'

recon

Reconstruct images from latent codes

	singularity exec --nv --cleanenv openLCH_latest.sif /bin/bash -c 'cd ./code; \
	LCH_PATH=YOUR_CODE_PATH_HERE; \
	th -i ./zLatent2ReconBatchLCH_2.lua \
	-autoencoder $LCH_PATH/autoencoder_eval_56zTRAINED.t7 \
	-zLatentFile $LCH_PATH/outputNew/embeddings_sampleTest.csv \
	-reconPath $LCH_PATH/outputNew/zRecon/ \
	-nLatentDims 56'

recon

Citation

@article {Zaritsky2020.05.15.096628,
	author = {Zaritsky, Assaf and Jamieson, Andrew R. and Welf, Erik S. and Nevarez, Andres and Cillay, Justin and Eskiocak, Ugur and Cantarel, Brandi L. and Danuser, Gaudenz},
	title = {Interpretable deep learning of label-free live cell images uncovers functional hallmarks of highly-metastatic melanoma},
	elocation-id = {2020.05.15.096628},
	year = {2020},
	doi = {10.1101/2020.05.15.096628},
	URL = {https://www.biorxiv.org/content/early/2020/05/15/2020.05.15.096628},
	eprint = {https://www.biorxiv.org/content/early/2020/05/15/2020.05.15.096628.full.pdf},
	journal = {bioRxiv}
}