-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathseam_carving.py
executable file
·377 lines (304 loc) · 12.2 KB
/
seam_carving.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# USAGE:
# python seam_carving.py (-resize | -remove) -im IM -out OUT [-mask MASK]
# [-rmask RMASK] [-dy DY] [-dx DX] [-vis] [-hremove] [-backward_energy]
# Examples:
# python seam_carving.py -resize -im demos/ratatouille.jpg -out ratatouille_resize.jpg
# -mask demos/ratatouille_mask.jpg -dy 20 -dx -200 -vis
# python seam_carving.py -remove -im demos/eiffel.jpg -out eiffel_remove.jpg
# -rmask demos/eiffel_mask.jpg -vis
import numpy as np
import cv2
import argparse
from numba import jit
from scipy import ndimage as ndi
SEAM_COLOR = np.array([255, 200, 200]) # seam visualization color (BGR)
SHOULD_DOWNSIZE = True # if True, downsize image for faster carving
DOWNSIZE_WIDTH = 500 # resized image width if SHOULD_DOWNSIZE is True
ENERGY_MASK_CONST = 100000.0 # large energy value for protective masking
MASK_THRESHOLD = 10 # minimum pixel intensity for binary mask
USE_FORWARD_ENERGY = True # if True, use forward energy algorithm
########################################
# UTILITY CODE
########################################
def visualize(im, boolmask=None, rotate=False):
vis = im.astype(np.uint8)
if boolmask is not None:
vis[np.where(boolmask == False)] = SEAM_COLOR
if rotate:
vis = rotate_image(vis, False)
cv2.imshow("visualization", vis)
cv2.waitKey(1)
return vis
def resize(image, width):
dim = None
h, w = image.shape[:2]
dim = (width, int(h * width / float(w)))
return cv2.resize(image, dim)
def rotate_image(image, clockwise):
k = 1 if clockwise else 3
return np.rot90(image, k)
########################################
# ENERGY FUNCTIONS
########################################
def backward_energy(im):
"""
Simple gradient magnitude energy map.
"""
xgrad = ndi.convolve1d(im, np.array([1, 0, -1]), axis=1, mode='wrap')
ygrad = ndi.convolve1d(im, np.array([1, 0, -1]), axis=0, mode='wrap')
grad_mag = np.sqrt(np.sum(xgrad**2, axis=2) + np.sum(ygrad**2, axis=2))
# vis = visualize(grad_mag)
# cv2.imwrite("backward_energy_demo.jpg", vis)
return grad_mag
@jit
def forward_energy(im):
"""
Forward energy algorithm as described in "Improved Seam Carving for Video Retargeting"
by Rubinstein, Shamir, Avidan.
Vectorized code adapted from
https://github.com/axu2/improved-seam-carving.
"""
h, w = im.shape[:2]
im = cv2.cvtColor(im.astype(np.uint8), cv2.COLOR_BGR2GRAY).astype(np.float64)
energy = np.zeros((h, w))
m = np.zeros((h, w))
U = np.roll(im, 1, axis=0)
L = np.roll(im, 1, axis=1)
R = np.roll(im, -1, axis=1)
cU = np.abs(R - L)
cL = np.abs(U - L) + cU
cR = np.abs(U - R) + cU
for i in range(1, h):
mU = m[i-1]
mL = np.roll(mU, 1)
mR = np.roll(mU, -1)
mULR = np.array([mU, mL, mR])
cULR = np.array([cU[i], cL[i], cR[i]])
mULR += cULR
argmins = np.argmin(mULR, axis=0)
m[i] = np.choose(argmins, mULR)
energy[i] = np.choose(argmins, cULR)
# vis = visualize(energy)
# cv2.imwrite("forward_energy_demo.jpg", vis)
return energy
########################################
# SEAM HELPER FUNCTIONS
########################################
@jit
def add_seam(im, seam_idx):
"""
Add a vertical seam to a 3-channel color image at the indices provided
by averaging the pixels values to the left and right of the seam.
Code adapted from https://github.com/vivianhylee/seam-carving.
"""
h, w = im.shape[:2]
output = np.zeros((h, w + 1, 3))
for row in range(h):
col = seam_idx[row]
for ch in range(3):
if col == 0:
p = np.average(im[row, col: col + 2, ch])
output[row, col, ch] = im[row, col, ch]
output[row, col + 1, ch] = p
output[row, col + 1:, ch] = im[row, col:, ch]
else:
p = np.average(im[row, col - 1: col + 1, ch])
output[row, : col, ch] = im[row, : col, ch]
output[row, col, ch] = p
output[row, col + 1:, ch] = im[row, col:, ch]
return output
@jit
def add_seam_grayscale(im, seam_idx):
"""
Add a vertical seam to a grayscale image at the indices provided
by averaging the pixels values to the left and right of the seam.
"""
h, w = im.shape[:2]
output = np.zeros((h, w + 1))
for row in range(h):
col = seam_idx[row]
if col == 0:
p = np.average(im[row, col: col + 2])
output[row, col] = im[row, col]
output[row, col + 1] = p
output[row, col + 1:] = im[row, col:]
else:
p = np.average(im[row, col - 1: col + 1])
output[row, : col] = im[row, : col]
output[row, col] = p
output[row, col + 1:] = im[row, col:]
return output
@jit
def remove_seam(im, boolmask):
h, w = im.shape[:2]
boolmask3c = np.stack([boolmask] * 3, axis=2)
return im[boolmask3c].reshape((h, w - 1, 3))
@jit
def remove_seam_grayscale(im, boolmask):
h, w = im.shape[:2]
return im[boolmask].reshape((h, w - 1))
@jit
def get_minimum_seam(im, mask=None, remove_mask=None):
"""
DP algorithm for finding the seam of minimum energy. Code adapted from
https://karthikkaranth.me/blog/implementing-seam-carving-with-python/
"""
h, w = im.shape[:2]
energyfn = forward_energy if USE_FORWARD_ENERGY else backward_energy
M = energyfn(im)
if mask is not None:
M[np.where(mask > MASK_THRESHOLD)] = ENERGY_MASK_CONST
# give removal mask priority over protective mask by using larger negative value
if remove_mask is not None:
M[np.where(remove_mask > MASK_THRESHOLD)] = -ENERGY_MASK_CONST * 100
backtrack = np.zeros_like(M, dtype=np.int)
# populate DP matrix
for i in range(1, h):
for j in range(0, w):
if j == 0:
idx = np.argmin(M[i - 1, j:j + 2])
backtrack[i, j] = idx + j
min_energy = M[i-1, idx + j]
else:
idx = np.argmin(M[i - 1, j - 1:j + 2])
backtrack[i, j] = idx + j - 1
min_energy = M[i - 1, idx + j - 1]
M[i, j] += min_energy
# backtrack to find path
seam_idx = []
boolmask = np.ones((h, w), dtype=np.bool)
j = np.argmin(M[-1])
for i in range(h-1, -1, -1):
boolmask[i, j] = False
seam_idx.append(j)
j = backtrack[i, j]
seam_idx.reverse()
return np.array(seam_idx), boolmask
########################################
# MAIN ALGORITHM
########################################
def seams_removal(im, num_remove, mask=None, vis=False, rot=False):
for _ in range(num_remove):
seam_idx, boolmask = get_minimum_seam(im, mask)
if vis:
visualize(im, boolmask, rotate=rot)
im = remove_seam(im, boolmask)
if mask is not None:
mask = remove_seam_grayscale(mask, boolmask)
return im, mask
def seams_insertion(im, num_add, mask=None, vis=False, rot=False):
seams_record = []
temp_im = im.copy()
temp_mask = mask.copy() if mask is not None else None
for _ in range(num_add):
seam_idx, boolmask = get_minimum_seam(temp_im, temp_mask)
if vis:
visualize(temp_im, boolmask, rotate=rot)
seams_record.append(seam_idx)
temp_im = remove_seam(temp_im, boolmask)
if temp_mask is not None:
temp_mask = remove_seam_grayscale(temp_mask, boolmask)
seams_record.reverse()
for _ in range(num_add):
seam = seams_record.pop()
im = add_seam(im, seam)
if vis:
visualize(im, rotate=rot)
if mask is not None:
mask = add_seam_grayscale(mask, seam)
# update the remaining seam indices
for remaining_seam in seams_record:
remaining_seam[np.where(remaining_seam >= seam)] += 2
return im, mask
########################################
# MAIN DRIVER FUNCTIONS
########################################
def seam_carve(im, dy, dx, mask=None, vis=False):
im = im.astype(np.float64)
h, w = im.shape[:2]
assert h + dy > 0 and w + dx > 0 and dy <= h and dx <= w
if mask is not None:
mask = mask.astype(np.float64)
output = im
if dx < 0:
output, mask = seams_removal(output, -dx, mask, vis)
elif dx > 0:
output, mask = seams_insertion(output, dx, mask, vis)
if dy < 0:
output = rotate_image(output, True)
if mask is not None:
mask = rotate_image(mask, True)
output, mask = seams_removal(output, -dy, mask, vis, rot=True)
output = rotate_image(output, False)
elif dy > 0:
output = rotate_image(output, True)
if mask is not None:
mask = rotate_image(mask, True)
output, mask = seams_insertion(output, dy, mask, vis, rot=True)
output = rotate_image(output, False)
return output
def object_removal(im, rmask, mask=None, vis=False, horizontal_removal=False):
im = im.astype(np.float64)
rmask = rmask.astype(np.float64)
if mask is not None:
mask = mask.astype(np.float64)
output = im
h, w = im.shape[:2]
if horizontal_removal:
output = rotate_image(output, True)
rmask = rotate_image(rmask, True)
if mask is not None:
mask = rotate_image(mask, True)
while len(np.where(rmask > MASK_THRESHOLD)[0]) > 0:
seam_idx, boolmask = get_minimum_seam(output, mask, rmask)
if vis:
visualize(output, boolmask, rotate=horizontal_removal)
output = remove_seam(output, boolmask)
rmask = remove_seam_grayscale(rmask, boolmask)
if mask is not None:
mask = remove_seam_grayscale(mask, boolmask)
num_add = (h if horizontal_removal else w) - output.shape[1]
output, mask = seams_insertion(output, num_add, mask, vis, rot=horizontal_removal)
if horizontal_removal:
output = rotate_image(output, False)
return output
if __name__ == '__main__':
ap = argparse.ArgumentParser()
group = ap.add_mutually_exclusive_group(required=True)
group.add_argument("-resize", action='store_true')
group.add_argument("-remove", action='store_true')
ap.add_argument("-im", help="Path to image", required=True)
ap.add_argument("-out", help="Output file name", required=True)
ap.add_argument("-mask", help="Path to (protective) mask")
ap.add_argument("-rmask", help="Path to removal mask")
ap.add_argument("-dy", help="Number of vertical seams to add/subtract", type=int, default=0)
ap.add_argument("-dx", help="Number of horizontal seams to add/subtract", type=int, default=0)
ap.add_argument("-vis", help="Visualize the seam removal process", action='store_true')
ap.add_argument("-hremove", help="Remove horizontal seams for object removal", action='store_true')
ap.add_argument("-backward_energy", help="Use backward energy map (default is forward)", action='store_true')
args = vars(ap.parse_args())
IM_PATH, MASK_PATH, OUTPUT_NAME, R_MASK_PATH = args["im"], args["mask"], args["out"], args["rmask"]
im = cv2.imread(IM_PATH)
assert im is not None
mask = cv2.imread(MASK_PATH, 0) if MASK_PATH else None
rmask = cv2.imread(R_MASK_PATH, 0) if R_MASK_PATH else None
USE_FORWARD_ENERGY = not args["backward_energy"]
# downsize image for faster processing
h, w = im.shape[:2]
if SHOULD_DOWNSIZE and w > DOWNSIZE_WIDTH:
im = resize(im, width=DOWNSIZE_WIDTH)
if mask is not None:
mask = resize(mask, width=DOWNSIZE_WIDTH)
if rmask is not None:
rmask = resize(rmask, width=DOWNSIZE_WIDTH)
# image resize mode
if args["resize"]:
dy, dx = args["dy"], args["dx"]
assert dy is not None and dx is not None
output = seam_carve(im, dy, dx, mask, args["vis"])
cv2.imwrite(OUTPUT_NAME, output)
# object removal mode
elif args["remove"]:
assert rmask is not None
output = object_removal(im, rmask, mask, args["vis"], args["hremove"])
cv2.imwrite(OUTPUT_NAME, output)