-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinject.py
113 lines (92 loc) · 4.38 KB
/
inject.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import pandas as pd
import config
import os
import argparse
import utils
def uniform_class_noise(df, label, percentage=0.05, random_state=123):
"""Uniform class noise in a binary classification dataset.
x% of the examples are corrupted.
The class labels of these examples are randomly replaced by another one from the M classes.
- flip 5% in each class, in total 5% of the labels are changed
Args:
df: pandas dataframe
percentage: the percentage to corrupt, percentage = X
label: the column of label
"""
## load in csv
dist = df[label].value_counts(ascending=True)
# print('class distribution before injection:\n', dist)
classes = list(dist.index)
## label == 1
train1 = df[df[label]==classes[1]].copy()
train1.loc[train1.sample(frac=percentage, random_state=random_state).index, label] = classes[0]
## label == 0
train0 = df[df[label]==classes[0]].copy()
train0.loc[train0.sample(frac=percentage, random_state=random_state).index, label] = classes[1]
## append the noisy sets
uniform_df = train1.append(train0)
# print('\nclass distribution after uniform injection:\n', uniform_df[label].value_counts(ascending=True))
return uniform_df
def pairwise_class_noise(df, label, percentage=0.05, random_state=123):
""" Pairwise class noise.
Let X be the majority class and Y the second
majority class, an example with the label X has a probability of x/100 of
being incorrectly labeled as Y .
- flip 5% of the labels in class A and keep the labels for class B
- flip 5% of the labels in class B and keep the labels for class A
Args:
df: pandas dataframe
percentage: the percentage to corrupt, percentage = X
label, the column of label
class_to_flip, the class label to corrupt
"""
## load in csv
dist = df[label].value_counts(ascending=True)
# print('class distribution before injection:\n', dist)
classes = list(dist.index)
flip_major = df.copy()
flip_major.loc[df[df[label]==classes[1]].sample(frac=percentage, random_state=random_state).index, label] = classes[0]
flip_minor = df.copy()
flip_minor.loc[df[df[label]==classes[0]].sample(frac=percentage, random_state=random_state).index, label] = classes[1]
# print('\nclass distribution after injection (flip majority class):\n', flip_major[label].value_counts(ascending=True))
# print('\nclass distribution after injection (flip minority class):\n', flip_minor[label].value_counts(ascending=True))
return flip_major, flip_minor
def inject(dataset):
""" Inject mislabels
Args:
dataset (dict): dataset dict in config
"""
# create saving folder
major_save_dir = utils.makedirs([config.data_dir, dataset["data_dir"] + "_major", 'raw'])
minor_save_dir = utils.makedirs([config.data_dir, dataset["data_dir"] + "_minor", 'raw'])
uniform_save_dir = utils.makedirs([config.data_dir, dataset["data_dir"] + "_uniform", 'raw'])
# load clean data
clean_path = utils.get_dir(dataset, 'raw', 'raw.csv')
clean = utils.load_df(dataset, clean_path)
clean = clean.dropna().reset_index(drop=True)
major_clean_path = os.path.join(major_save_dir, 'mislabel_clean_raw.csv')
minor_clean_path = os.path.join(minor_save_dir, 'mislabel_clean_raw.csv')
uniform_clean_path = os.path.join(uniform_save_dir, 'mislabel_clean_raw.csv')
clean.to_csv(major_clean_path, index=False)
clean.to_csv(minor_clean_path, index=False)
clean.to_csv(uniform_clean_path, index=False)
label = dataset['label']
# uniform flip
uniform = uniform_class_noise(clean, label)
# pairwise flip
major, minor = pairwise_class_noise(clean, label)
major_raw_path = os.path.join(major_save_dir, 'raw.csv')
minor_raw_path = os.path.join(minor_save_dir, 'raw.csv')
uniform_raw_path = os.path.join(uniform_save_dir, 'raw.csv')
major.to_csv(major_raw_path, index=False)
minor.to_csv(minor_raw_path, index=False)
uniform.to_csv(uniform_raw_path, index=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default=None)
args = parser.parse_args()
# datasets to be inject, inject all datasets with error type mislabel if not specified
datasets = [utils.get_dataset(args.dataset)]
# clean datasets
for dataset in datasets:
inject(dataset)