forked from CAOR-MINES-ParisTech/lwoi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_kaist.py
executable file
·507 lines (418 loc) · 17.4 KB
/
main_kaist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import argparse
import os
import progressbar
import torch
import pyro
import pyro.contrib.gp as gp
import numpy as np
from liegroups.torch import SE3, SO3
import pickle
from dataset import NCLTDataset, KAISTDataset
from filter import KAISTFilter, NCLTFilter
from plots import plot_animation, plot_and_save_traj, plot_and_save_cate
from scipy.signal import savgol_filter
from train import train_gp, GpOdoFog, GpImu, FNET, HNET
def read_data_nclt(args):
def set_path_nclt(args, dataset):
path_odo = os.path.join(args.path_data_base, 'sensor_data', dataset, "wheels.csv")
path_fog = os.path.join(args.path_data_base, 'sensor_data', dataset, "kvh.csv")
path_imu = os.path.join(args.path_data_base, 'sensor_data', dataset, "ms25.csv")
path_gt = os.path.join(args.path_data_base, 'ground_truth', "groundtruth_" + dataset + ".csv")
return path_odo, path_fog, path_imu, path_gt
def gt2chi(x):
"""Convert ground truth (position, Euler angle) to SE(3) pose"""
X = torch.eye(4)
X[:3, :3] = SO3.from_rpy(x[3:]).as_matrix()
X[:3, 3] = x[:3]
return X
time_factor = 1e6 # ms -> s
g = torch.Tensor([0, 0, 9.81]) # gravity vector
def interp_data(x, t, t0):
x_int = np.zeros((t.shape[0], x.shape[1]))
x_int[:, 0] = t
for i in range(1, x.shape[1]):
x_int[:, i] = np.interp(t, (x[:, 0] - t0) / time_factor, x[:, i])
return x_int
datasets = os.listdir(os.path.join(args.path_data_base, 'sensor_data'))
k = int(args.Delta_t/args.delta_t)
bar_dataset = progressbar.ProgressBar(max_value=len(datasets))
for idx_i, dataset_i in enumerate(datasets):
print("\nDataset name: " + dataset_i)
path_odo, path_fog, path_imu, path_gt = set_path_nclt(args, dataset_i)
imu = np.genfromtxt(path_imu, delimiter=",", skip_header=1)
odo = np.genfromtxt(path_odo, delimiter=",", skip_header=1)
fog = np.genfromtxt(path_fog, delimiter=",", skip_header=1)
gt = np.genfromtxt(path_gt, delimiter=",", skip_header=1)
# time synchronization
t0 = np.max([fog[0, 0], gt[0, 0], odo[0, 0], imu[0, 0]])
t_end = np.min([fog[-1, 0], gt[-1, 0], odo[-1, 0], imu[-1, 0]])
# interpolate all data, with particular attention to angles
t_end = int((t_end-t0)/time_factor)
t = np.linspace(0, t_end, num=int(t_end/args.delta_t))
gt_new = np.zeros((t.shape[0], gt.shape[1]))
fog_new = np.zeros((t.shape[0], 4))
fog_unwrap = np.unwrap(fog[:, 1])
gt_t = (gt[:, 0]-t0)/time_factor
fog_t = (fog[:, 0]-t0)/time_factor
i_gt = 0
i_fog = 0
i_fog_prev = i_fog
for j in range(t.shape[0]):
while gt_t[i_gt] < t[j]:
i_gt += 1
while fog_t[i_fog] < t[j]:
i_fog += 1
if np.abs(gt_t[i_gt]-t[j]) < np.abs(gt_t[i_gt-1]-t[j]):
gt_new[j, :] = gt[i_gt, :]
else:
gt_new[j, :] = gt[i_gt-1, :]
if np.abs(fog_t[i_fog]-t[j]) < np.abs(fog_t[i_fog+1]-t[j]):
fog_new[j, 3] = fog_unwrap[i_fog]-fog_unwrap[i_fog_prev]
i_fog_prev = i_fog
else:
fog_new[j, 3] = fog_unwrap[i_fog+1]-fog_unwrap[i_fog_prev]
i_fog_prev = i_fog+1
gt_new[:, :4] = interp_data(gt[:, :4], t, t0)
odo = interp_data(odo, t, t0)
imu = interp_data(imu, t, t0)
gt = torch.from_numpy(gt_new[:, 1:])
imu = torch.from_numpy(imu[:, 1:])
odo = torch.from_numpy(odo[:, 1:])
fog = torch.from_numpy(-fog_new[:, 1:])
# take IMR gyro and accelerometer
imu = imu[:, [6, 7, 8, 3, 4, 5]]
error = (fog-fog.float().double()).norm() + (imu-imu.float().double()).norm() + \
(odo-odo.float().double()).norm() + (gt-gt.float().double()).norm()
if error > 0.1:
print("conversion double -> float error ! ! !")
fog = fog.float()
imu = imu.float()
odo = odo.float()
gt = gt.float()
# offset position to 0
gt[:, :3] = gt[:, :3]-gt[0, :3]
v_gt = torch.zeros(gt.shape[0], 3)
for j in range(3):
p_gt_smooth = torch.from_numpy(savgol_filter(gt[:, j], 5, 2))
v_gt[1:, j] = (p_gt_smooth[1:]-p_gt_smooth[:-1])/args.delta_t
N_max = torch.ceil(torch.Tensor([t.shape[0]/k])).int().item()
chi = torch.eye(4).repeat(N_max, 1, 1)
y_odo_fog = torch.eye(4).repeat(N_max, 1, 1)
u_odo_fog = torch.zeros(N_max, k, 3)
u_imu = torch.zeros(N_max, k, 6)
y_imu = torch.zeros(N_max, 9)
i_odo = 0
i = 0
bar_dataset_i = progressbar.ProgressBar(t.shape[0])
while i_odo + k < t.shape[0]:
u_odo_fog[i] = torch.cat((odo[i_odo:i_odo+k],
fog[i_odo:i_odo+k, 2].unsqueeze(-1)), 1)
u_imu[i] = imu[i_odo:i_odo+k]
chi_end = gt2chi(gt[i_odo+k])
chi[i] = gt2chi(gt[i_odo])
chi_i = chi[i]
y_odo_fog[i] = SE3.from_matrix(chi_i).inv().dot(SE3.from_matrix(chi_end)).as_matrix()
v_i = v_gt[i_odo]
v_end = v_gt[i_odo+k]
y_imu[i] = torch.cat((
SO3.from_matrix(chi_i[:3, :3].t().mm(chi_end[:3, :3])).log(),
chi_i[:3, :3].t().mv(v_end-v_i-g*args.Delta_t),
chi_i[:3, :3].t().mv(chi_end[:3, 3]-chi_i[:3, 3]-v_i*args.Delta_t-1/2*g*args.Delta_t**2)
), 0)
i_odo += k
i += 1
if i_odo % 100 == 0:
bar_dataset_i.update(i_odo)
mondict = {'t': t[:i],
'chi': chi[:i],
'u_imu': u_imu[:i],
'u_odo_fog': u_odo_fog[:i],
'y_odo_fog': y_odo_fog[:i],
'y_imu': y_imu[:i],
'name': dataset_i
}
bar_dataset.update(idx_i)
print("\nNumber of points: {}".format(i))
with open(args.path_data_save + dataset_i +".p", "wb") as file_pi:
pickle.dump(mondict, file_pi)
def read_data_kaist(args):
def set_path_kaist(args, dataset):
path_odo = os.path.join(args.path_data_base, dataset, "sensor_data", "encoder.csv")
path_fog = os.path.join(args.path_data_base, dataset, "sensor_data", "fog.csv")
path_imu = os.path.join(args.path_data_base, dataset, "sensor_data", "xsens_imu.csv")
path_gt = os.path.join(args.path_data_base, dataset, "global_pose.csv")
return path_odo, path_fog, path_imu, path_gt
def gt2chi(x):
X = torch.eye(4)
X[0] = x[:4]
X[1] = x[4:8]
X[2] = x[8:12]
X[:3, :3] = SO3.from_matrix(X[:3, :3], normalize=True).as_matrix()
return X
time_factor = 1e9 # ns -> s
g = torch.Tensor([0, 0, -9.81]) # gravity vector
threshold_odo = 30 # for removing outlier
def interp_data(x, t, t0):
x_int = np.zeros((t.shape[0], x.shape[1]))
for i in range(1, x.shape[1]):
x_int[:, i] = t if i == 0 else np.interp(t, (x[:, 0] - t0) / time_factor, x[:, i])
return x_int
datasets = os.listdir(args.path_data_base)
k = int(args.Delta_t/args.delta_t)
bar_dataset = progressbar.ProgressBar(max_value=len(datasets))
for idx_i, dataset_i in enumerate(datasets):
print("\nDataset name: " + dataset_i)
path_odo, path_fog, path_imu, path_gt = set_path_kaist(args, dataset_i)
imu = np.genfromtxt(path_imu, delimiter=",")
odo = np.genfromtxt(path_odo, delimiter=",")
fog = np.genfromtxt(path_fog, delimiter=",")
gt = np.genfromtxt(path_gt, delimiter=",")
# Urban00-05 and campus00 have only quaternion and Euler data
# Must be considered in Dataset class
imu_present = imu.shape[1] > 10
if not imu_present:
imu = np.zeros((odo.shape[0], 17))
imu[:, 0] = odo[:, 0]
print("No IMU data for dataset " + dataset_i)
# time synchronization
t0 = np.max([fog[0, 0], gt[0, 0], odo[0, 0], imu[0, 0]])
t_end = np.min([fog[-1, 0], gt[-1, 0], odo[-1, 0], imu[-1, 0]])
# interpolate all
# Transform differential measurement into integrated measurement
t_end = int((t_end-t0)/time_factor)
t = np.linspace(0, t_end, num=int(t_end/args.delta_t))
gt_new = np.zeros((t.shape[0], gt.shape[1]))
fog_new = np.zeros((t.shape[0], 4))
gt_t = (gt[:, 0]-t0)/time_factor
fog_t = (fog[:, 0]-t0)/time_factor
i_gt = 0
i_fog = 0
i_fog_prev = i_fog
for j in range(t.shape[0]):
while gt_t[i_gt] < t[j]:
i_gt += 1
while fog_t[i_fog] < t[j]:
i_fog += 1
if np.abs(gt_t[i_gt]-t[j]) < np.abs(gt_t[i_gt-1]-t[j]):
gt_new[j, :] = gt[i_gt, :]
else:
gt_new[j, :] = gt[i_gt-1, :]
if np.abs(fog_t[i_fog]-t[j]) < np.abs(fog_t[i_fog+1]-t[j]):
fog_new[j, 1:] = np.sum(fog[i_fog_prev:i_fog, 1:], axis=0)
else:
fog_new[j, 1:] = np.sum(fog[i_fog_prev:i_fog+1, 1:], axis=0)
i_fog_prev = i_fog
# interpolate position
gt_new[:, [0, 4, 8, 12]] = interp_data(gt[:, [0, 4, 8, 12]], t, t0)
gt_new[:, 0] = t
fog_new[:, 0] = t
odo = interp_data(odo, t, t0)
imu = interp_data(imu, t, t0)
gt = torch.from_numpy(gt_new[:, 1:])
imu = torch.from_numpy(imu[:, 1:])
odo = torch.from_numpy(odo[:, 1:])
fog = torch.from_numpy(fog_new[:, 1:])
# take IMR gyro and accelerometer
imu = imu[:, 7:13]
# Transform integrated measurement into differential measurement
odo[1:, :] = odo[1:, :] - odo[:-1, :]
odo[0, :] = 0
# remove outlier
diff_odo = (odo[:, 1]-odo[:, 0]).numpy()
idx_outlier = np.where(np.abs(diff_odo) > threshold_odo)
print("outliers in odometer: {:.2f}%".format(len(idx_outlier[0])/diff_odo.shape[0]))
while len(idx_outlier[0]) > 0:
for idx in idx_outlier[0]:
diff_odo[idx] = (diff_odo[idx+1]+diff_odo[idx-1])/2
idx_outlier = np.where(np.abs(diff_odo) > threshold_odo)
# offset position to 0
for j in range(3):
gt[:, 3+4*j] = gt[:, 3+4*j]-gt[0, 3+4*j]
error = (fog-fog.float().double()).norm() + (imu-imu.float().double()).norm() + \
(odo-odo.float().double()).norm() + (gt-gt.float().double()).norm()
if error > 0.1:
print("conversion double -> float error ! ! !")
fog = fog.float()
imu = imu.float()
odo = odo.float()
gt = gt.float()
v_gt = torch.zeros(gt.shape[0], 3)
for j in range(3):
p_gt_smooth = torch.from_numpy(savgol_filter(gt[:, 3+4*j], 5, 2))
v_gt[1:, j] = (p_gt_smooth[1:]-p_gt_smooth[:-1])/args.delta_t
# max number of measurements for this dataset
N_max = torch.ceil(torch.Tensor([t.shape[0]/k])).int().item()
chi = torch.eye(4).repeat(N_max, 1, 1)
y_odo_fog = torch.eye(4).repeat(N_max, 1, 1)
u_odo_fog = torch.zeros(N_max, k, 3)
u_imu = torch.zeros(N_max, k, 6)
y_imu = torch.zeros(N_max, 9)
i_odo = 0
i = 0
bar_dataset_i = progressbar.ProgressBar(t.shape[0])
while i_odo + k < t.shape[0]:
u_odo_fog[i] = torch.cat((odo[i_odo:i_odo+k],
fog[i_odo:i_odo+k, 2].unsqueeze(-1)), 1)
chi_end = gt2chi(gt[i_odo+k])
chi[i] = gt2chi(gt[i_odo])
chi_i = chi[i]
y_odo_fog[i] = SE3.from_matrix(chi_i).inv().dot(SE3.from_matrix(chi_end)).as_matrix()
if imu_present:
u_imu[i] = imu[i_odo:i_odo + k]
v_i = v_gt[i_odo]
v_end = v_gt[i_odo+k]
y_imu[i] = torch.cat((
SO3.from_matrix(chi_i[:3, :3].t().mm(chi_end[:3, :3])).log(),
chi_i[:3, :3].t().mv(v_end-v_i- g*args.Delta_t),
chi_i[:3, :3].t().mv(chi_end[:3, 3]-chi_i[:3, 3]-v_i*args.Delta_t-1/2*g*args.Delta_t**2)
),0)
i_odo += k
i += 1
if i_odo % 100 == 0:
bar_dataset_i.update(i_odo)
mondict = {'t': t[:i],
'chi': chi[:i],
'u_imu': u_imu[:i],
'u_odo_fog': u_odo_fog[:i],
'y_odo_fog': y_odo_fog[:i],
'y_imu': y_imu[:i],
'name': dataset_i
}
bar_dataset.update(idx_i)
print("\nNumber of points: {}\n".format(i))
with open(args.path_data_save + dataset_i +".p", "wb") as file_pi:
pickle.dump(mondict, file_pi)
def set_gp_imu(args, dataset):
path_gp_imu = args.path_temp + "gp_imu"
if args.nclt: # this is just for correct dimension
u, y = dataset.get_train_data(1, gp_name='GpImu')
else:
u, y = dataset.get_test_data(1, gp_name='GpImu')
hnet_dict = torch.load(path_gp_imu + "hnet.p")
lik_dict = torch.load(path_gp_imu + "likelihood.p")
kernel_dict = torch.load(path_gp_imu + "kernel.p")
gp_dict = torch.load(path_gp_imu + "gp_h.p")
hnet = HNET(args, u.shape[2], args.kernel_dim)
hnet.load_state_dict(hnet_dict)
def hnet_fn(x):
return pyro.module("HNET", hnet)(x)
Xu = u[torch.arange(0, u.shape[0], step=int(u.shape[0]/args.num_inducing_point)).long()]
lik_h = gp.likelihoods.Gaussian(name='lik_h', variance=torch.ones(9, 1))
lik_h.load_state_dict(lik_dict)
kernel_h = gp.kernels.Matern52(input_dim=args.kernel_dim, lengthscale=torch.ones(args.kernel_dim)).\
warp(iwarping_fn=hnet_fn)
kernel_h.load_state_dict(kernel_dict)
gp_h = gp.models.VariationalSparseGP(u, u.new_ones(9, u.shape[0]), kernel_h, Xu, num_data=dataset.num_data,
likelihood=lik_h, mean_function=None, name='GP_h', whiten=True, jitter=1e-4)
gp_h.load_state_dict(gp_dict)
gp_imu = GpImu(args, gp_h, dataset)
gp_imu.normalize_factors = torch.load(path_gp_imu + "normalize_factors.p")
return gp_imu
def set_gp_odo_fog(args, dataset):
path_gp_odo_fog = args.path_temp + "gp_odo_fog"
if args.nclt: # this is just for correct dimension
u, y = dataset.get_train_data(1, gp_name='GpOdoFog')
else:
u, y = dataset.get_test_data(1, gp_name='GpOdoFog')
fnet_dict = torch.load(path_gp_odo_fog + "fnet.p")
lik_dict = torch.load(path_gp_odo_fog + "likelihood.p")
kernel_dict = torch.load(path_gp_odo_fog + "kernel.p")
gp_dict = torch.load(path_gp_odo_fog + "gp_f.p")
fnet = FNET(args, u.shape[2], args.kernel_dim)
fnet.load_state_dict(fnet_dict)
def fnet_fn(x):
return pyro.module("FNET", fnet)(x)
Xu = u[torch.arange(0, u.shape[0], step=int(u.shape[0]/args.num_inducing_point)).long()]
lik_f = gp.likelihoods.Gaussian(name='lik_f', variance=torch.ones(6, 1))
lik_f.load_state_dict(lik_dict)
kernel_f = gp.kernels.Matern52(input_dim=args.kernel_dim, lengthscale=torch.ones(args.kernel_dim)).\
warp(iwarping_fn=fnet_fn)
kernel_f.load_state_dict(kernel_dict)
gp_f = gp.models.VariationalSparseGP(u, u.new_ones(6, u.shape[0]), kernel_f, Xu, num_data=dataset.num_data,
likelihood=lik_f, mean_function=None, name='GP_f', whiten=True, jitter=1e-4)
gp_f.load_state_dict(gp_dict)
gp_odo_fog = GpOdoFog(args, gp_f, dataset)
gp_odo_fog.normalize_factors = torch.load(path_gp_odo_fog + "normalize_factors.p")
return gp_odo_fog
def post_tests(args, dataset, filter_original):
gp_odo_fog = set_gp_odo_fog(args, dataset)
gp_imu = set_gp_imu(args, dataset)
filter_corrected = args.filter(args, dataset, gp_odo_fog=gp_odo_fog, gp_imu=gp_imu)
bar_dataset = progressbar.ProgressBar(max_value=len(dataset.datasets))
for i in range(len(dataset.datasets)):
dataset_name = dataset.datasets[i]
if dataset_name in dataset.datasets_test:
type_dataset = ", Test dataset"
elif dataset_name in dataset.datasets_validation:
type_dataset = ", Cross-validation dataset"
else:
type_dataset = ", Training dataset"
t, x0, u_odo_fog, y_imu = dataset.get_filter_data(dataset_name)
P0 = torch.zeros(15, 15)
u_odo = u_odo_fog[..., :2]
u_fog = u_odo_fog[..., 2:]
x_corrected, P_corrected = filter_corrected.run(t, x0, P0, u_fog, u_odo, y_imu, args.compare)
x_original, P_original = filter_original.run(t, x0, P0, u_fog, u_odo, y_imu, args.compare)
_, chi = dataset.get_ground_truth_data(dataset_name)
t = np.linspace(0, args.Delta_t*t.shape[0], t.shape[0])
error_corrected = filter_corrected.compute_error(t, x_corrected, chi, dataset_name)
error_original = filter_original.compute_error(t, x_original, chi, dataset_name)
print("\n" + dataset_name + type_dataset + ", dataset size: {}".format(chi.shape[0]))
print("m-ATE Translation corrected " + args.compare + ": {:.2f} (m-ATE un-corrected ".format(
error_corrected['mate translation']) + args.compare + ": {:.2f})".format(error_original['mate translation']))
print("m-ATE Rotation corrected " + args.compare + " : {:.2f} (m-ATE un-corrected ".format(
error_corrected['mate rotation']*180/np.pi) + args.compare + ": {:.2f})".format(error_original['mate rotation']*180/np.pi))
bar_dataset.update(i)
def launch(args):
if args.nclt:
args.filter = NCLTFilter
args.dataset_name = "nclt"
args.cross_validation_sequences = ['2012-10-28', '2012-11-04', '2012-11-16', '2012-11-17']
args.test_sequences = ['2012-12-01', '2013-01-10', '2013-02-23', '2013-04-05']
else:
args.filter = KAISTFilter
args.dataset_name = "Kaist"
args.cross_validation_sequences = ['urban14', 'urban17']
args.test_sequences = ['urban15', 'urban16']
### What to do
args.read_data = True
args.train_gp_odo_fog = True
args.train_gp_imu = True
args.post_tests = True
# extract data
if args.read_data:
read_data_nclt(args) if args.nclt else read_data_kaist(args)
dataset = NCLTDataset(args) if args.nclt else KAISTDataset(args)
filter_original = args.filter(args, dataset)
# train propagation Gaussian process
if args.train_gp_odo_fog:
train_gp(args, dataset, GpOdoFog)
# train measurement Gaussian process
if args.train_gp_imu:
train_gp(args, dataset, GpImu)
# run models and filters on validation data
if args.post_tests:
post_tests(args, dataset, filter_original)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='GP Kaist')
parser.add_argument('--nclt', type=bool, default=False)
# paths
parser.add_argument('--path_data_base', type=str, default="/media/mines/DATA/KAIST/data/")
parser.add_argument('--path_data_save', type=str, default="data/kaist/")
parser.add_argument('--path_results', type=str, default="results/kaist/")
parser.add_argument('--path_temp', type=str, default="temp/kaist/")
# data extraction
parser.add_argument('--y_diff_odo_fog_threshold', type=float, default=0.25)
parser.add_argument('--y_diff_imu_threshold', type=float, default=0.25)
# model parameters
parser.add_argument('--delta_t', type=float, default=0.01)
parser.add_argument('--Delta_t', type=float, default=1)
parser.add_argument('--num_inducing_point', type=int, default=100)
parser.add_argument('--kernel_dim', type=int, default=20)
# optimizer parameters
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--lr_decay', type=float, default=0.999)
parser.add_argument('--compare', type=str, default="model")
args = parser.parse_args()
launch(args)