forked from NREL/ReEDS-2.0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathd3_augur_data_dump.gms
executable file
·424 lines (352 loc) · 17.5 KB
/
d3_augur_data_dump.gms
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
$ontext
This file creates a gdx file with all of the data necessary for the Augur module to solve. This includes:
- Generator capacities
- Exogenous retirments (sequential solves only)
- Wind capacity by build year (because wind CFs change by build year)
- heat rates, fuel costs, and vom costs
- capacity factors (hydro, wind)
- availability rates (1 - outage rates)
- transmission capacities and loss rates
- technology sets
$offtext
$if not set start_year $setglobal start_year 2010
*===============================
* Set and parameter definitions
*===============================
set rfeas(r) "list of feasible r regions - for use in Augur only"
trange(t) "range from first year to current year"
tcur(t) "current year"
tnext(t) "next year"
valcap_i_filt(i) "subset of valcap"
valcap_ir(i,r) "subset of valcap"
valcap_iv_filt(i,v) "subset of valcap"
routes_filt(r,rr,trtype) "set of transmission connections"
;
parameter
avail_filt(i,v,allszn) "--fraction-- fraction of capacity available for generation by season"
can_exports_h_filt(r,allh) "--MW-- Canada exports by region and timeslice filtered for the previous solve year"
can_imports_cap(i,v,r) "--MW-- Canadian import max capacity"
can_imports_szn_filt(r,allszn) "--MWh-- Canada imports by region and season filtered for the previous solve year"
cap_converter_filt(r) "--MW-- VSC AC/DC converter capacity"
cap_exist_i(i) "--MW-- technologies with existing capacity in the current solve year"
cap_exist_ir(i,r) "--MW-- technology-region combinations with existing capacity in the current solve year"
cap_exist_iv(i,v) "--MW-- technology-vintage combinations with existing capacity in the current solve year"
cap_exist(i,v,r) "--MW-- capacity that exists in the current solve year"
cap_exog_filt(i,v,r) "--MW-- exogenous capacity"
cap_hyd_szn_adj_filt(i,allszn,r) "--fraction-- seasonal hydro capacity adjustment filtered for the previous solve year"
cap_init(i,v,r) "--MW-- initial capacity"
cap_ivrt(i,v,r,t) "--MW-- generation capacity"
cap_pvb(i,v,r) "--MW-- Hybrid PV+battery capacity (PV)"
cap_trans_energy(r,rr,trtype) "--MW-- transmission capacity for energy trading"
cap_trans_prm(r,rr,trtype) "--MW-- transmission capacity for PRM trading"
cf_adj_t_filt(i,v,t) "--fraction-- capacity factor adjustment for wind"
cost_cap_filt(i,t) "--2004$/MW-- technology capital costs"
cost_cap_fin_mult_filt(i,r,t) "--unitless-- capital cost financial multipliers"
cost_vom_filt(i,v,r) "--$/MWh-- VO&M costs filtered for the previous solve year and existing capacity"
ctt_i_ii_filt(i,ii) "--set-- set linking watercooling techs i to numeraire techs ii filtered for existing watercooling techs"
ctt_i_ii_psh(i,ii) "--set-- set linking PSH techs with water i to numeraire techs ii filtered for valid capacity techs"
emissions_price(e,r) "--2004$/ton-- combined emissions taxes and marginal prices for emissions caps"
emit_rate_filt(e,i,v,r) "--ton/MWh-- emission rate for the previous solve year"
energy_price(r,allh) "--2004$/MWh-- energy price from the previous solve year"
flex_load_opt(r,allh) "--MW-- model results for optimizing flexible load"
flex_load(r,allh) "--MW-- total exogenously defined flexible load"
fuel_price_filt(i,r) "--$/mmBTU-- fuel prices filtered for the previous solve year and existing capacity"
heat_rate_filt(i,v,r) "--MMBtu/MWh-- heat rate"
h2_usage_regional(r,allh,t) "--ton-- H2 usage by region"
inv_cond_filt(i,v,t) "--set-- vintage-year mapping for investments by technology"
inv_ivrt(i,v,r,t) "--MW-- investments in generation capacity"
m_cf_filt(i,v,r,allh) "--fraction-- capacity factor used in the model"
m_cf_szn_filt(i,v,r,allszn) "--fraction-- modelled capacity factors filtered for hydro resources to set seasonal energy constraints"
minloadfrac_filt(r,i,allszn) "--fraction-- modelled mingen fraction filtered for hydro resources to set mingen constraints"
prod_filt(i,v,r,allh) "--MW-- power consumed for PRODUCE.l"
repbioprice_filt(r) "--2004$/MWh-- marginal price for biofuel in region where biofuel was used"
repgasprice_filt(r) "--$/mmBTU-- NG prices in ReEDS filtered for the previous solve year"
repgasprice_r(r,t) "--$/mmBTU-- NG prices in ReEDS, switch-dependent, at the BA level"
repgasprice(cendiv,t) "--$/mmBTU-- NG prices in ReEDS, the calculation of which depends on what switch is used"
repgasquant(cendiv,t) "--mmBTU-- NG fuel usage in ReEDS - used to determine NG price"
ret_ivrt(i,v,r,t) "--MW-- retirements of generation capacity"
ret(i,v,r) "--MW-- retirements of generation capacity"
rsc_dat_dr(i,r,sc_cat,rscbin) "--varies-- DR resource supply curve data"
rsc_dat_evmc(i,r,sc_cat,rscbin) "--varies-- EVMC resource supply curve data"
rsc_dat_filt(i,r,sc_cat,rscbin) "--$/MW-- capital costs filtered for pumped-hydro so arbitrage value doesn't exceed capital costs"
storage_eff_filt(i) "--fraction-- storage efficiency filtered for the next solve year"
upgrade_to_filt(i,ii) "--set-- set linking upgrade techs to the tech the upgraded from filtered for existing upgrades"
;
rfeas(r) = yes ;
trange(t) = no ;
loop(t$[(yeart(t)>%start_year%)$(yeart(t)<=%next_year%)],
trange(t) = yes ;
) ;
trange("%next_year%") = no ;
trange("%cur_year%") = yes ;
tcur(t) = no ;
tcur("%cur_year%") = yes ;
tnext(t) = no ;
tnext("%next_year%") = yes ;
*populate reduced-form sets
valcap_iv_filt(i,v) = sum{(r,t)$tcur(t), valcap(i,v,r,t)} ;
valcap_i_filt(i) = sum{v, valcap_iv_filt(i,v)} ;
valcap_ir(i,r) = sum{t$tcur(t), valcap_irt(i,r,t)} ;
*=======================================
* Removing banned technologies from sets
*=======================================
csp_sm(i) = csp_sm(i)$(not ban(i)) ;
geo(i) = geo(i)$(not ban(i)) ;
hydro_d(i) = hydro_d(i)$(not ban(i)) ;
hydro_nd(i) = hydro_nd(i)$(not ban(i)) ;
nuclear(i) = nuclear(i)$(not ban(i)) ;
dr1(i) = dr1(i)$(not ban(i)) ;
dr2(i) = dr2(i)$(not ban(i)) ;
evmc_shape(i) = evmc_shape(i)$(not ban(i)) ;
evmc_storage(i) = evmc_storage(i)$(not ban(i)) ;
storage_duration(i) = storage_duration(i)$(not ban(i)) ;
storage_eff(i,t) = storage_eff(i,t)$(not ban(i)) ;
storage_standalone(i) = storage_standalone(i)$(not ban(i)) ;
*==============================
* Get ReEDS generation capacity
*==============================
cap_exist(i,v,r)$valcap_ivr(i,v,r) = sum{t$tcur(t), CAP.l(i,v,r,t) } ;
cap_exist_ir(i,r)$valcap_ir(i,r) = sum{v, cap_exist(i,v,r) } ;
cap_exist_iv(i,v)$valcap_iv_filt(i,v) = sum{r, cap_exist(i,v,r) } ;
cap_exist_i(i)$valcap_i_filt(i) = sum{(r,v), cap_exist(i,v,r) } ;
cap_ivrt(i,v,r,t)$([not (upv(i) or dupv(i) or wind(i))]$valcap(i,v,r,t)$trange(t)) = CAP.l(i,v,r,t) ;
cap_ivrt(i,v,r,t)$([upv(i) or dupv(i) or wind(i)]$valcap(i,v,r,t)) =
m_capacity_exog(i,v,r,t)$trange(t)
+ sum{tt$[inv_cond(i,v,r,t,tt)$trange(tt)],
INV.l(i,v,r,tt) + INV_REFURB.l(i,v,r,tt)$[refurbtech(i)$Sw_Refurb]} ;
cap_init(i,v,r)$([not distpv(i)]$valcap_ivr(i,v,r)) = sum{t$tcur(t), cap_ivrt(i,v,r,t)$initv(v) } ;
cap_init(i,v,r)$(distpv(i)$valcap_ivr(i,v,r)) = sum{t$tfirst(t), cap_ivrt(i,v,r,t) } ;
inv_ivrt(i,v,r,t)$[valcap(i,v,r,t)$trange(t)] = [INV.l(i,v,r,t) + INV_REFURB.l(i,v,r,t)]$valinv(i,v,r,t) + UPGRADES.l(i,v,r,t)$[upgrade(i)$valcap(i,v,r,t)$Sw_Upgrades] ;
inv_ivrt("distpv",v,r,t)$([trange(t)$(not tfirst(t))]$valcap("distpv",v,r,t)) = cap_ivrt("distpv",v,r,t) - sum{tt$tprev(t,tt), cap_ivrt("distpv",v,r,tt) } ;
inv_ivrt("distpv","init-1",r,"%next_year%") = inv_distpv(r,"%next_year%") ;
ret_ivrt(i,v,r,t)$([trange(t)$(not tfirst(t))$newv(v)]$valcap(i,v,r,t)) = sum{tt$tprev(t,tt), cap_ivrt(i,v,r,tt)} - cap_ivrt(i,v,r,t) + inv_ivrt(i,v,r,t) ;
ret_ivrt(i,v,r,t)$([abs(ret_ivrt(i,v,r,t) < 1e-6)]$valcap(i,v,r,t)) = 0 ;
ret(i,v,r)$valcap_ivr(i,v,r) = sum{t, ret_ivrt(i,v,r,t) } ;
cap_exog_filt(i,v,r)$([not canada(i)]$valcap_ivr(i,v,r)) = sum{t$tnext(t), m_capacity_exog(i,v,r,t) } ;
*============================
* Fuel prices
*============================
fuel_price_filt(i,r)$cap_exist_ir(i,r) = sum{t$tcur(t), fuel_price(i,r,t) } ;
* populate the fuel price for H2-CT techs as the marginal off the
* hydrogen demand constraint (in $/[tonne/hour]) divided by hours and
* times h2_ct_intensity (tonne / mmbtu) to get $ / mmbtu -- note there should
* always be a positive value here since if an H2-CT is built it consumes hydrogen
* the equation from which we extract the marginal depends on whether
* we have the national (Sw_H2 = 1) or regional (Sw_H2 = 2) constraint
h2_usage_regional(r,h,t) =
hours(h) * (
h2_exogenous_demand_regional(r,'h2',h,t)
+ sum{(i,v)$[valgen(i,v,r,t)$h2_ct(i)],
GEN.l(i,v,r,h,t) * h2_ct_intensity * heat_rate(i,v,r,t)}
)
;
fuel_price_filt(i,r)$[Sw_H2$h2_ct(i)$(sum{t$tcur(t),yeart(t) } >= h2_demand_start)$cap_exist_ir(i,r)] =
sum{t$tcur(t),
(1 / cost_scale) * (1 / pvf_onm(t)) * h2_ct_intensity * (
eq_h2_demand.m('h2',t)$[Sw_H2=1]
* regional demand is now by hour, so calculate annual price as the weighted average of demand across hours
+ (sum{h, eq_h2_demand_regional.m(r,h,t) / hours(h) * h2_usage_regional(r,h,t) }
/ sum{h, h2_usage_regional(r,h,t) }
)$[(Sw_H2=2)$(sum{h, h2_usage_regional(r,h,t) })]
)
}
;
* for regions that consumed biomass, use the cost of the last supply curve bin consumed
repbioprice_filt(r)$[sum{(t, bioclass), bioused.l(bioclass,r,t) }] =
sum{t$tcur(t), smax{bioclass$[bioused.l(bioclass,r,t)],
sum{usda_region$r_usda(r, usda_region), biosupply(usda_region,bioclass,"price")} } + bio_transport_cost } ;
* for regions with no biomass, assign biomass price as the cost of the cheapest available supply curve bin for that region
* also safeguard against outlying values (for some reason smax sometimes returns -INF for regions w/o biomass consumption)
repbioprice_filt(r)$[(repbioprice_filt(r) <= 0)] = rep_bio_price_unused(r) ;
repgasquant(cendiv,t)$[(Sw_GasCurve = 0 or Sw_GasCurve = 3)$tcur(t)] =
sum{(gb,h), GASUSED.l(cendiv,gb,h,t) * hours(h) } ;
repgasquant(cendiv,t)$[(Sw_GasCurve = 1 or Sw_GasCurve = 2)$tcur(t)] =
sum{(i,v,r,h)$[r_cendiv(r,cendiv)$valgen(i,v,r,t)$gas(i)$heat_rate(i,v,r,t)],
hours(h) * heat_rate(i,v,r,t) * GEN.l(i,v,r,h,t)
} ;
repgasprice(cendiv,t)$[(Sw_GasCurve = 0)$tcur(t)] =
smax{gb$[sum{h, GASUSED.l(cendiv,gb,h,t) }], gasprice(cendiv,gb,t) } ;
repgasprice(cendiv,t)$[(Sw_GasCurve = 2)$tcur(t)$repgasquant(cendiv,t)] =
sum{(i,v,r,h)$[r_cendiv(r,cendiv)$valgen(i,v,r,t)$gas(i)$heat_rate(i,v,r,t)],
hours(h)*heat_rate(i,v,r,t)*fuel_price(i,r,t)*GEN.l(i,v,r,h,t)
} / (repgasquant(cendiv,t)) ;
repgasprice_r(r,t)$[(Sw_GasCurve = 0 or Sw_GasCurve = 2)$tcur(t)] = sum{cendiv$r_cendiv(r,cendiv), repgasprice(cendiv,t) } ;
repgasprice_r(r,t)$[(Sw_GasCurve = 1)$tcur(t)] =
( sum{(h,cendiv),
gasmultterm(cendiv,t) * szn_adj_gas(h) * cendiv_weights(r,cendiv) *
hours(h) } / sum{h, hours(h) }
+ smax((fuelbin,cendiv)$[VGASBINQ_REGIONAL.l(fuelbin,cendiv,t)$r_cendiv(r,cendiv)], gasbinp_regional(fuelbin,cendiv,t) )
+ smax(fuelbin$VGASBINQ_NATIONAL.l(fuelbin,t), gasbinp_national(fuelbin,t) )
) ;
* catch any infinite values, assign to reference gas price
repgasprice_r(r,t)$[(repgasprice_r(r,t) = -inf or repgasprice_r(r,t) = inf)$tcur(t)] =
smax{cendiv$r_cendiv(r,cendiv), gasprice_ref(cendiv,t) } ;
repgasprice_filt(r) = sum{t$tcur(t), repgasprice_r(r,t) } ;
*============================
* Filter necessary input data
*============================
avail_filt(i,v,szn)$[cap_exist_iv(i,v)$(not vre(i))] = smax{h$h_szn(h,szn), avail(i,h) * derate_geo_vintage(i,v) } ;
can_exports_h_filt(r,h) = sum{t$tcur(t), can_exports_h(r,h,t)} ;
can_imports_cap(i,v,r)$canada(i) = sum{t$tcur(t), m_capacity_exog(i,v,r,t) } ;
can_imports_szn_filt(r,szn) = sum{t$tcur(t), can_imports_szn(r,szn,t)} ;
*can_exports_h_filt(r,h)$[Sw_Canada = 2] = 0 ;
*can_imports_cap(i,v,r)$[Sw_Canada = 2] = 0 ;
*can_imports_szn_filt(r,szn)$[Sw_Canada = 2] = 0 ;
cap_hyd_szn_adj_filt(i,szn,r)$[cap_exist_ir(i,r)$hydro_d(i)] = cap_hyd_szn_adj(i,szn,r) ;
cost_cap_filt(i,t)$[storage_standalone(i) or dr(i) or evmc(i)] = cost_cap(i,t)$tnext(t) ;
cost_cap_fin_mult_filt(i,r,t)$([storage_standalone(i) or dr(i) or evmc(i)]) = cost_cap_fin_mult(i,r,t)$tnext(t) ;
cost_vom_filt(i,v,r)$cap_exist(i,v,r) = sum{t$tcur(t), cost_vom(i,v,r,t) } ;
cf_adj_t_filt(i,v,t)$[cap_exist_iv(i,v)$trange(t)] = cf_adj_t(i,v,t) ;
cf_adj_t_filt(i,v,"%next_year%") = cf_adj_t(i,v,"%next_year%")$(vre(i) or pvb(i)) ;
ctt_i_ii_filt(i,ii) = ctt_i_ii(i,ii)$cap_exist_i(i) ;
ctt_i_ii_psh(i,ii) = ctt_i_ii(i,ii)$[valcap_i_filt(i)$psh(i)] ;
emit_rate_filt(e,i,v,r)$cap_exist(i,v,r) = sum{t$tcur(t), emit_rate(e,i,v,r,t) } ;
heat_rate_filt(i,v,r)$cap_exist(i,v,r) = sum{t$tcur(t), heat_rate(i,v,r,t) } ;
inv_cond_filt(i,v,t)$[(vre(i) or pvb(i))$tnext(t)] = sum{(tt,r), inv_cond(i,v,r,tt,t) } ;
m_cf_filt(i,v,r,h)$[(vre(i) or pvb(i))$cap_exist(i,v,r)] = sum{t$tnext(t), m_cf(i,v,r,h,t) } ;
m_cf_szn_filt(i,v,r,szn)$[hydro(i)$cap_exist(i,v,r)] = sum{t$tcur(t), m_cf_szn(i,v,r,szn,t) } ;
minloadfrac_filt(r,i,szn)$[hydro(i)$cap_exist_ir(i,r)$szn_rep(szn)] =
sum{h$h_szn(h,szn), minloadfrac(r,i,h) * hours(h) } / sum{h$h_szn(h,szn), hours(h) } ;
rsc_dat_filt(i,r,"cost",rscbin)$[storage_standalone(i)$cap_exist_ir(i,r)] = rsc_dat(i,r,"cost",rscbin) ;
rsc_dat_dr(i,r,"cost",rscbin)$dr(i) = sum{t$tnext(t), rsc_dr(i,r,"cost",rscbin,t) };
rsc_dat_evmc(i,r,"cost",rscbin)$evmc(i) = sum{t$tnext(t), rsc_evmc(i,r,"cost",rscbin,t) };
storage_eff_filt(i)$storage(i) = sum{t$tnext(t), storage_eff(i,t) } ;
upgrade_to_filt(i,ii) = upgrade_to(i,ii)$cap_exist_i(i) ;
*============================
* Get ReEDS transmission data
*============================
cap_trans_energy(r,rr,trtype) = sum{t$tcur(t), CAPTRAN_ENERGY.l(r,rr,trtype,t) } ;
cap_trans_prm(r,rr,trtype) = sum{t$tcur(t), CAPTRAN_PRM.l(r,rr,trtype,t) } ;
cap_converter_filt(r) = sum{t$tcur(t), CAP_CONVERTER.l(r,t) } ;
* In Augur, trtype="AC" includes everything except for VSC
routes_filt(r,rr,trtype) = sum{t$tcur(t), routes(r,rr,trtype,t) } ;
*============================
* Flexible load data
*============================
flex_load(r,h) = sum{(flex_type,t)$tcur(t), load_exog_flex(flex_type,r,h,t) } ;
flex_load_opt(r,h) = sum{(flex_type,t)$tcur(t), FLEX.l(flex_type,r,h,t) } ;
*============================
* Extra consumption data
*============================
prod_filt(i,v,r,h)$[sum{t$tcur(t), valcap(i,v,r,t)}$consume(i)$hours(h)] =
sum{(p,t)$[i_p(i,p)$tcur(t)], PRODUCE.l(p,i,v,r,h,t) / prod_conversion_rate(i,v,r,t) } ;
*============================
* Get ReEDS emissions prices [$/ton]
*============================
* NOT included: eq_emit_rate_limit (disabled by default), eq_CSAPR_Budget, eq_CSAPR_Assurance
emissions_price(e,r) =
(1 / cost_scale / emit_scale(e))
* sum{t$tcur(t),
(1 / pvf_onm(t)) * eq_annual_cap.m(e,t)
+ emit_tax(e,r,t)
} ;
* Add marginal prices from CO2-specific constraints
emissions_price("CO2",r) =
emissions_price("CO2",r)
+ (1 / cost_scale / emit_scale("CO2"))
* sum{t$tcur(t),
(1 / pvf_onm(t)) * [
eq_RGGI_cap.m(t)$RGGI_R(r)
+ sum{st$r_st(r,st), eq_state_cap.m(st,t) }
]
} ;
*===================================
* Get ReEDS energy prices ($/MWh)
*===================================
energy_price(r,h)$hours(h) =
sum{t$tcur(t),
(1 / cost_scale) * (1 / pvf_onm(t)) * eq_supply_demand_balance.m(r,h,t) / hours(h) } ;
*=======================================
* Unload all relevant data to a gdx file
*=======================================
execute_unload 'ReEDS_Augur%ds%augur_data%ds%reeds_data_%cur_year%.gdx'
allowed_shed
avail_filt
bcr
bir_pvb_config
can_exports_h_filt
can_imports_cap
can_imports_szn_filt
cap_converter_filt
cap_exog_filt
cap_hyd_szn_adj_filt
cap_init
cap_ivrt
cap_trans_energy
cap_trans_prm
cf_adj_t_filt
converter_efficiency_vsc
cost_cap_filt
cost_cap_fin_mult_filt
cost_vom_filt
csp_sm
ctt_i_ii_filt
ctt_i_ii_psh
degrade_annual
dr1
dr2
evmc_shape
evmc_storage
evmc_shape_gen
evmc_shape_load
evmc_storage_discharge_frac
evmc_storage_charge_frac
evmc_storage_energy_hours
emissions_price
emit_rate_filt
energy_price
flex_load
flex_load_opt
forced_outage
fuel_price_filt
fuel2tech
geo
h_szn
heat_rate_filt
hierarchy
hydro_d
hydro_nd
hours
hydmin
i
ilr
ilr_pvb_config
i_subsets
inv_cond_filt
inv_ivrt
ivt_num
m_cf_filt
m_cf_szn_filt
maxage
minloadfrac_filt
notvsc
nuclear
prm
prod_filt
pvf_onm
r
rfeas
r_cendiv
repbioprice_filt
repgasprice_filt
ret
ret_ivrt
routes_filt
rsc_dat_dr
rsc_dat_evmc
rsc_dat_filt
sdbin
storage_duration
storage_eff
storage_eff_filt
storage_standalone
Sw_VSC
szn
tfirst
tmodel_new
tranloss
trtype
upgrade_to_filt
v
vom_hyd
;