-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVarAutoEncodernucleotideClassWise.py
153 lines (119 loc) · 5.61 KB
/
VarAutoEncodernucleotideClassWise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from operator import xor
from Utils import *
from MyModels import *
from sklearn.model_selection import train_test_split
import numpy as np
from random import shuffle
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.optimizers import SGD, Adam, RMSprop
from matplotlib import pyplot as plt
import tensorflow as tf
from tensorflow.keras import backend as K
from keras.callbacks import History
history = History()
all_data_class1 = read_seq_new(r'C:\Users\aminu\Documents\COVID-19\CovidVariantsDataset\SARS-CoV-2 (B)\ncbi_dataset\data\genomic.fna',0)
# all_data_class2 = read_seq_new(r'C:\Users\aminu\Documents\COVID-19\CovidVariantsDataset\SARS-CoV-2 (B.1.1.7)\ncbi_dataset\data\genomic.fna',1)
all_data_class2 = read_seq_new(r'C:\Users\aminu\Documents\COVID-19\CovidVariantsDataset\SARS-CoV-2 (B.1.351)\ncbi_dataset\data\genomic.fna',2)
# all_data_class2 = read_seq_new(r'C:\Users\aminu\Documents\COVID-19\CovidVariantsDataset\SARS-CoV-2 (B.1.617.2)\ncbi_dataset\data\genomic.fna',3)
# all_data_class2 = read_seq_new(r'C:\Users\aminu\Documents\COVID-19\CovidVariantsDataset\SARS-CoV-2 (C.37)\ncbi_dataset\data\genomic.fna',4)
# all_data_class2 = read_seq_new(r'C:\Users\aminu\Documents\COVID-19\CovidVariantsDataset\SARS-CoV-2 (P.1)\ncbi_dataset\data\genomic.fna',5)
x=[]
y=[]
for itm in all_data_class1:
x.append(itm[0])
for itm in all_data_class2:
y.append(itm[0])
x_train=np.asarray(x, dtype=np.float)
y_train=np.asarray(y, dtype=np.float)
f y_train.shape[0] > x_train.shape[0]:
y_train= y_train[0:x_train.shape[0],:,:]
else:
x_train= x_train[0:y_train.shape[0],:,:]
print(x_train.shape, y_train.shape)
class Sampling(tf.keras.layers.Layer):
"""Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
def call(self, inputs):
z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
latent_dim = 350
encoder_inputs = tf.keras.layers.Input(shape=(12000,))
x = tf.keras.layers.Dense(9000, activation='relu')(encoder_inputs)
x = tf.keras.layers.Dense(6000, activation='relu')(x)
x = tf.keras.layers.Dense(3000, activation='relu')(x)
x = tf.keras.layers.Dense(1500, activation='relu')(x)
x = tf.keras.layers.Dense(700, activation='relu')(x)
z_mean = tf.keras.layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = tf.keras.layers.Dense(latent_dim, name="z_log_var")(x)
z = Sampling()([z_mean, z_log_var])
encoder = tf.keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder")
encoder.summary()
latent_inputs = tf.keras.layers.Input(shape=(latent_dim,))
x = tf.keras.layers.Dense(700, activation='relu')(latent_inputs)
x = tf.keras.layers.Dense(1500, activation='relu')(x)
x = tf.keras.layers.Dense(3000, activation='relu')(x)
x = tf.keras.layers.Dense(6000, activation='relu')(x)
x = tf.keras.layers.Dense(9000, activation='relu')(x)
decoder_outputs = tf.keras.layers.Dense(12000, activation='relu')(x)
decoder = tf.keras.Model(latent_inputs, decoder_outputs, name="decoder")
decoder.summary()
class VAE(tf.keras.Model):
def __init__(self, encoder, decoder, **kwargs):
super(VAE, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
self.total_loss_tracker = tf.keras.metrics.Mean(name="total_loss")
self.reconstruction_loss_tracker = tf.keras.metrics.Mean(
name="construction_loss"
)
self.kl_loss_tracker = tf.keras.metrics.Mean(name="kl_loss")
@property
def metrics(self):
return [
self.total_loss_tracker,
self.reconstruction_loss_tracker,
self.kl_loss_tracker,
]
def train_step(self, data):
with tf.GradientTape() as tape:
x , y = data
z_mean, z_log_var, z = self.encoder(x)
reconstruction = self.decoder(z)
reconstruction_loss = tf.reduce_mean(
tf.reduce_sum(
tf.keras.losses.binary_crossentropy(y, reconstruction), axis=-1
)
)
kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
kl_loss = tf.reduce_mean(tf.reduce_sum(kl_loss, axis=1))
total_loss = reconstruction_loss + kl_loss
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
self.total_loss_tracker.update_state(total_loss)
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
self.kl_loss_tracker.update_state(kl_loss)
return {
"loss": self.total_loss_tracker.result(),
"construction_loss": self.reconstruction_loss_tracker.result(),
"kl_loss": self.kl_loss_tracker.result(),
}
print(x_train.shape)
x_train = x_train.reshape(-1,12000)
y_train = y_train.reshape(-1,12000)
print(x_train.shape)
vae = VAE(encoder, decoder)
vae.compile(optimizer=tf.keras.optimizers.Adam())
history = vae.fit(x_train, y_train, epochs=100, batch_size=64, callbacks=[history])
plot_Gen_Loss(history,'Generator_nuc')
# noise = np.random.randn(100, latent_dim)
# gen_seqs= vae.decoder.predict(noise)
gen_seqs = []
for i in range(100):
noise = np.random.randn(1, latent_dim)
gen_seqs.append(vae.decoder.predict(noise))
gen_seqs = np.array(gen_seqs)
saveGeneratedSeq(gen_seqs.reshape(-1,3000,4))
fileName = 'VAEseqGen_Nucleotides_Model'
vae.save(fileName)