- Train and predict with H2O
- Two training programs:
- H2O Random Forest - simple train
- H2O AutoML
- Saves model in H2O format.
- Wine quality dataset ../data/wine-quality-white.csv.
conda env create --file conda.yaml
conda activate mlflow-examples-h2o
Source: train.py.
python train.py --experiment_name h2o --ntrees 5
h2o version: 3.28.0.3
Checking whether there is an H2O instance running at http://localhost:54321 ..... not found.
Attempting to start a local H2O server...
. . .
Parse progress: |█████████████████████████████████████████████████████████| 100%
MLflow:
run_id: 3c552d33dbe145939d60084c662c3af2
experiment.id: 4
experiment.name: h2o_wine
experiment.artifact_location: file:///Users/andre/work/mlflow/server/local_mlrun/mlruns/4
drf Model Build progress: |███████████████████████████████████████████████| 100%
Closing connection _sid_abe4 at exit
H2O session _sid_abe4 closed.
Source: automl_train.py.
python automl_train.py --experiment_name h2o_automl --ntrees 5
model_id mean_residual_deviance rmse mse mae rmsle training_time_ms predict_time_per_row_ms
--------------------------------------------------- ------------------------ -------- -------- -------- --------- ------------------ -------------------------
StackedEnsemble_BestOfFamily_AutoML_20200412_231704 0.392527 0.62652 0.392527 0.449962 0.09409 634 0.015658
StackedEnsemble_AllModels_AutoML_20200412_231704 0.392923 0.626836 0.392923 0.449871 0.0941326 706 0.036654
DRF_1_AutoML_20200412_231704 0.399265 0.631874 0.399265 0.45661 0.0951139 828 0.00458
XGBoost_2_AutoML_20200412_231704 0.405155 0.636518 0.405155 0.464714 0.0954654 3969 0.005445
XGBoost_1_AutoML_20200412_231704 0.415968 0.644956 0.415968 0.474978 0.0965878 3268 0.003939
GBM_4_AutoML_20200412_231704 0.431667 0.657014 0.431667 0.493813 0.0984208 240 0.003878
GBM_3_AutoML_20200412_231704 0.436481 0.660667 0.436481 0.500997 0.0988277 250 0.004338
GBM_1_AutoML_20200412_231704 0.441423 0.664397 0.441423 0.507534 0.0994319 308 0.004561
GBM_2_AutoML_20200412_231704 0.443043 0.665615 0.443043 0.510294 0.0994141 214 0.007207
XGBoost_3_AutoML_20200412_231704 0.451612 0.672021 0.451612 0.520061 0.100172 1385 0.002573
Score with mlflow.h2o.load_model
and mlflow.pyfunc.load_model
.
Source: h2o_predict.py.
python h2o_predict.py runs:/7e674524514846799310c41f10d6b99d/h2o-model
model.type: <class 'h2o.estimators.random_forest.H2ORandomForestEstimator'>
predictions:
predict
0 6.000000
1 6.000000
2 5.915790
Source: pyfunc_predict.py.
python pyfunc_predict.py runs:/7e674524514846799310c41f10d6b99d/h2o-model
model: <mlflow.h2o._H2OModelWrapper object at 0x11dff0b90>
predictions:
predict
0 6.000000
1 6.000000
2 5.915790