forked from aimacode/aima-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnlp4e.py
523 lines (437 loc) · 19.6 KB
/
nlp4e.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
"""Natural Language Processing (Chapter 22)"""
from collections import defaultdict
from utils4e import weighted_choice
import copy
import operator
import heapq
from search import Problem
# ______________________________________________________________________________
# 22.2 Grammars
def Rules(**rules):
"""Create a dictionary mapping symbols to alternative sequences.
>>> Rules(A = "B C | D E")
{'A': [['B', 'C'], ['D', 'E']]}
"""
for (lhs, rhs) in rules.items():
rules[lhs] = [alt.strip().split() for alt in rhs.split('|')]
return rules
def Lexicon(**rules):
"""Create a dictionary mapping symbols to alternative words.
>>> Lexicon(Article = "the | a | an")
{'Article': ['the', 'a', 'an']}
"""
for (lhs, rhs) in rules.items():
rules[lhs] = [word.strip() for word in rhs.split('|')]
return rules
class Grammar:
def __init__(self, name, rules, lexicon):
"""A grammar has a set of rules and a lexicon."""
self.name = name
self.rules = rules
self.lexicon = lexicon
self.categories = defaultdict(list)
for lhs in lexicon:
for word in lexicon[lhs]:
self.categories[word].append(lhs)
def rewrites_for(self, cat):
"""Return a sequence of possible rhs's that cat can be rewritten as."""
return self.rules.get(cat, ())
def isa(self, word, cat):
"""Return True iff word is of category cat"""
return cat in self.categories[word]
def cnf_rules(self):
"""Returns the tuple (X, Y, Z) for rules in the form:
X -> Y Z"""
cnf = []
for X, rules in self.rules.items():
for (Y, Z) in rules:
cnf.append((X, Y, Z))
return cnf
def generate_random(self, S='S'):
"""Replace each token in S by a random entry in grammar (recursively)."""
import random
def rewrite(tokens, into):
for token in tokens:
if token in self.rules:
rewrite(random.choice(self.rules[token]), into)
elif token in self.lexicon:
into.append(random.choice(self.lexicon[token]))
else:
into.append(token)
return into
return ' '.join(rewrite(S.split(), []))
def __repr__(self):
return '<Grammar {}>'.format(self.name)
def ProbRules(**rules):
"""Create a dictionary mapping symbols to alternative sequences,
with probabilities.
>>> ProbRules(A = "B C [0.3] | D E [0.7]")
{'A': [(['B', 'C'], 0.3), (['D', 'E'], 0.7)]}
"""
for (lhs, rhs) in rules.items():
rules[lhs] = []
rhs_separate = [alt.strip().split() for alt in rhs.split('|')]
for r in rhs_separate:
prob = float(r[-1][1:-1]) # remove brackets, convert to float
rhs_rule = (r[:-1], prob)
rules[lhs].append(rhs_rule)
return rules
def ProbLexicon(**rules):
"""Create a dictionary mapping symbols to alternative words,
with probabilities.
>>> ProbLexicon(Article = "the [0.5] | a [0.25] | an [0.25]")
{'Article': [('the', 0.5), ('a', 0.25), ('an', 0.25)]}
"""
for (lhs, rhs) in rules.items():
rules[lhs] = []
rhs_separate = [word.strip().split() for word in rhs.split('|')]
for r in rhs_separate:
prob = float(r[-1][1:-1]) # remove brackets, convert to float
word = r[:-1][0]
rhs_rule = (word, prob)
rules[lhs].append(rhs_rule)
return rules
class ProbGrammar:
def __init__(self, name, rules, lexicon):
"""A grammar has a set of rules and a lexicon.
Each rule has a probability."""
self.name = name
self.rules = rules
self.lexicon = lexicon
self.categories = defaultdict(list)
for lhs in lexicon:
for word, prob in lexicon[lhs]:
self.categories[word].append((lhs, prob))
def rewrites_for(self, cat):
"""Return a sequence of possible rhs's that cat can be rewritten as."""
return self.rules.get(cat, ())
def isa(self, word, cat):
"""Return True iff word is of category cat"""
return cat in [c for c, _ in self.categories[word]]
def cnf_rules(self):
"""Returns the tuple (X, Y, Z, p) for rules in the form:
X -> Y Z [p]"""
cnf = []
for X, rules in self.rules.items():
for (Y, Z), p in rules:
cnf.append((X, Y, Z, p))
return cnf
def generate_random(self, S='S'):
"""Replace each token in S by a random entry in grammar (recursively).
Returns a tuple of (sentence, probability)."""
def rewrite(tokens, into):
for token in tokens:
if token in self.rules:
non_terminal, prob = weighted_choice(self.rules[token])
into[1] *= prob
rewrite(non_terminal, into)
elif token in self.lexicon:
terminal, prob = weighted_choice(self.lexicon[token])
into[0].append(terminal)
into[1] *= prob
else:
into[0].append(token)
return into
rewritten_as, prob = rewrite(S.split(), [[], 1])
return (' '.join(rewritten_as), prob)
def __repr__(self):
return '<Grammar {}>'.format(self.name)
E0 = Grammar('E0',
Rules( # Grammar for E_0 [Figure 22.2]
S='NP VP | S Conjunction S',
NP='Pronoun | Name | Noun | Article Noun | Digit Digit | NP PP | NP RelClause',
VP='Verb | VP NP | VP Adjective | VP PP | VP Adverb',
PP='Preposition NP',
RelClause='That VP'),
Lexicon( # Lexicon for E_0 [Figure 22.3]
Noun="stench | breeze | glitter | nothing | wumpus | pit | pits | gold | east",
Verb="is | see | smell | shoot | fell | stinks | go | grab | carry | kill | turn | feel", # noqa
Adjective="right | left | east | south | back | smelly | dead",
Adverb="here | there | nearby | ahead | right | left | east | south | back",
Pronoun="me | you | I | it",
Name="John | Mary | Boston | Aristotle",
Article="the | a | an",
Preposition="to | in | on | near",
Conjunction="and | or | but",
Digit="0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9",
That="that"
))
E_ = Grammar('E_', # Trivial Grammar and lexicon for testing
Rules(
S='NP VP',
NP='Art N | Pronoun',
VP='V NP'),
Lexicon(
Art='the | a',
N='man | woman | table | shoelace | saw',
Pronoun='I | you | it',
V='saw | liked | feel'
))
E_NP_ = Grammar('E_NP_', # Another Trivial Grammar for testing
Rules(NP='Adj NP | N'),
Lexicon(Adj='happy | handsome | hairy',
N='man'))
E_Prob = ProbGrammar('E_Prob', # The Probabilistic Grammar from the notebook
ProbRules(
S="NP VP [0.6] | S Conjunction S [0.4]",
NP="Pronoun [0.2] | Name [0.05] | Noun [0.2] | Article Noun [0.15] \
| Article Adjs Noun [0.1] | Digit [0.05] | NP PP [0.15] | NP RelClause [0.1]",
VP="Verb [0.3] | VP NP [0.2] | VP Adjective [0.25] | VP PP [0.15] | VP Adverb [0.1]",
Adjs="Adjective [0.5] | Adjective Adjs [0.5]",
PP="Preposition NP [1]",
RelClause="RelPro VP [1]"
),
ProbLexicon(
Verb="is [0.5] | say [0.3] | are [0.2]",
Noun="robot [0.4] | sheep [0.4] | fence [0.2]",
Adjective="good [0.5] | new [0.2] | sad [0.3]",
Adverb="here [0.6] | lightly [0.1] | now [0.3]",
Pronoun="me [0.3] | you [0.4] | he [0.3]",
RelPro="that [0.5] | who [0.3] | which [0.2]",
Name="john [0.4] | mary [0.4] | peter [0.2]",
Article="the [0.5] | a [0.25] | an [0.25]",
Preposition="to [0.4] | in [0.3] | at [0.3]",
Conjunction="and [0.5] | or [0.2] | but [0.3]",
Digit="0 [0.35] | 1 [0.35] | 2 [0.3]"
))
E_Chomsky = Grammar('E_Prob_Chomsky', # A Grammar in Chomsky Normal Form
Rules(
S='NP VP',
NP='Article Noun | Adjective Noun',
VP='Verb NP | Verb Adjective',
),
Lexicon(
Article='the | a | an',
Noun='robot | sheep | fence',
Adjective='good | new | sad',
Verb='is | say | are'
))
E_Prob_Chomsky = ProbGrammar('E_Prob_Chomsky', # A Probabilistic Grammar in CNF
ProbRules(
S='NP VP [1]',
NP='Article Noun [0.6] | Adjective Noun [0.4]',
VP='Verb NP [0.5] | Verb Adjective [0.5]',
),
ProbLexicon(
Article='the [0.5] | a [0.25] | an [0.25]',
Noun='robot [0.4] | sheep [0.4] | fence [0.2]',
Adjective='good [0.5] | new [0.2] | sad [0.3]',
Verb='is [0.5] | say [0.3] | are [0.2]'
))
E_Prob_Chomsky_ = ProbGrammar('E_Prob_Chomsky_',
ProbRules(
S='NP VP [1]',
NP='NP PP [0.4] | Noun Verb [0.6]',
PP='Preposition NP [1]',
VP='Verb NP [0.7] | VP PP [0.3]',
),
ProbLexicon(
Noun='astronomers [0.18] | eyes [0.32] | stars [0.32] | telescopes [0.18]',
Verb='saw [0.5] | \'\' [0.5]',
Preposition='with [1]'
))
# ______________________________________________________________________________
# 22.3 Parsing
class Chart:
"""Class for parsing sentences using a chart data structure.
>>> chart = Chart(E0)
>>> len(chart.parses('the stench is in 2 2'))
1
"""
def __init__(self, grammar, trace=False):
"""A datastructure for parsing a string; and methods to do the parse.
self.chart[i] holds the edges that end just before the i'th word.
Edges are 5-element lists of [start, end, lhs, [found], [expects]]."""
self.grammar = grammar
self.trace = trace
def parses(self, words, S='S'):
"""Return a list of parses; words can be a list or string."""
if isinstance(words, str):
words = words.split()
self.parse(words, S)
# Return all the parses that span the whole input
# 'span the whole input' => begin at 0, end at len(words)
return [[i, j, S, found, []]
for (i, j, lhs, found, expects) in self.chart[len(words)]
# assert j == len(words)
if i == 0 and lhs == S and expects == []]
def parse(self, words, S='S'):
"""Parse a list of words; according to the grammar.
Leave results in the chart."""
self.chart = [[] for i in range(len(words) + 1)]
self.add_edge([0, 0, 'S_', [], [S]])
for i in range(len(words)):
self.scanner(i, words[i])
return self.chart
def add_edge(self, edge):
"""Add edge to chart, and see if it extends or predicts another edge."""
start, end, lhs, found, expects = edge
if edge not in self.chart[end]:
self.chart[end].append(edge)
if self.trace:
print('Chart: added {}'.format(edge))
if not expects:
self.extender(edge)
else:
self.predictor(edge)
def scanner(self, j, word):
"""For each edge expecting a word of this category here, extend the edge."""
for (i, j, A, alpha, Bb) in self.chart[j]:
if Bb and self.grammar.isa(word, Bb[0]):
self.add_edge([i, j + 1, A, alpha + [(Bb[0], word)], Bb[1:]])
def predictor(self, edge):
"""Add to chart any rules for B that could help extend this edge."""
(i, j, A, alpha, Bb) = edge
B = Bb[0]
if B in self.grammar.rules:
for rhs in self.grammar.rewrites_for(B):
self.add_edge([j, j, B, [], rhs])
def extender(self, edge):
"""See what edges can be extended by this edge."""
(j, k, B, _, _) = edge
for (i, j, A, alpha, B1b) in self.chart[j]:
if B1b and B == B1b[0]:
self.add_edge([i, k, A, alpha + [edge], B1b[1:]])
# ______________________________________________________________________________
# CYK Parsing
class Tree:
def __init__(self, root, *args):
self.root = root
self.leaves = [leaf for leaf in args]
def CYK_parse(words, grammar):
""" [Figure 22.6] """
# We use 0-based indexing instead of the book's 1-based.
P = defaultdict(float)
T = defaultdict(Tree)
# Insert lexical categories for each word.
for (i, word) in enumerate(words):
for (X, p) in grammar.categories[word]:
P[X, i, i] = p
T[X, i, i] = Tree(X, word)
# Construct X(i:k) from Y(i:j) and Z(j+1:k), shortest span first
for i, j, k in subspan(len(words)):
for (X, Y, Z, p) in grammar.cnf_rules():
PYZ = P[Y, i, j] * P[Z, j + 1, k] * p
if PYZ > P[X, i, k]:
P[X, i, k] = PYZ
T[X, i, k] = Tree(X, T[Y, i, j], T[Z, j + 1, k])
return T
def subspan(N):
"""returns all tuple(i, j, k) covering a span (i, k) with i <= j < k"""
for length in range(2, N + 1):
for i in range(1, N + 2 - length):
k = i + length - 1
for j in range(i, k):
yield (i, j, k)
# using search algorithms in the searching part
class TextParsingProblem(Problem):
def __init__(self, initial, grammar, goal='S'):
"""
:param initial: the initial state of words in a list.
:param grammar: a grammar object
:param goal: the goal state, usually S
"""
super(TextParsingProblem, self).__init__(initial, goal)
self.grammar = grammar
self.combinations = defaultdict(list) # article combinations
# backward lookup of rules
for rule in grammar.rules:
for comb in grammar.rules[rule]:
self.combinations[' '.join(comb)].append(rule)
def actions(self, state):
actions = []
categories = self.grammar.categories
# first change each word to the article of its category
for i in range(len(state)):
word = state[i]
if word in categories:
for X in categories[word]:
state[i] = X
actions.append(copy.copy(state))
state[i] = word
# if all words are replaced by articles, replace combinations of articles by inferring rules.
if not actions:
for start in range(len(state)):
for end in range(start, len(state) + 1):
# try combinations between (start, end)
articles = ' '.join(state[start:end])
for c in self.combinations[articles]:
actions.append(state[:start] + [c] + state[end:])
return actions
def result(self, state, action):
return action
def h(self, state):
# heuristic function
return len(state)
def astar_search_parsing(words, gramma):
"""bottom-up parsing using A* search to find whether a list of words is a sentence"""
# init the problem
problem = TextParsingProblem(words, gramma, 'S')
state = problem.initial
# init the searching frontier
frontier = [(len(state) + problem.h(state), state)]
heapq.heapify(frontier)
while frontier:
# search the frontier node with lowest cost first
cost, state = heapq.heappop(frontier)
actions = problem.actions(state)
for action in actions:
new_state = problem.result(state, action)
# update the new frontier node to the frontier
if new_state == [problem.goal]:
return problem.goal
if new_state != state:
heapq.heappush(frontier, (len(new_state) + problem.h(new_state), new_state))
return False
def beam_search_parsing(words, gramma, b=3):
"""bottom-up text parsing using beam search"""
# init problem
problem = TextParsingProblem(words, gramma, 'S')
# init frontier
frontier = [(len(problem.initial), problem.initial)]
heapq.heapify(frontier)
# explore the current frontier and keep b new states with lowest cost
def explore(frontier):
new_frontier = []
for cost, state in frontier:
# expand the possible children states of current state
if not problem.goal_test(' '.join(state)):
actions = problem.actions(state)
for action in actions:
new_state = problem.result(state, action)
if [len(new_state), new_state] not in new_frontier and new_state != state:
new_frontier.append([len(new_state), new_state])
else:
return problem.goal
heapq.heapify(new_frontier)
# only keep b states
return heapq.nsmallest(b, new_frontier)
while frontier:
frontier = explore(frontier)
if frontier == problem.goal:
return frontier
return False
# ______________________________________________________________________________
# 22.4 Augmented Grammar
g = Grammar("arithmetic_expression", # A Grammar of Arithmetic Expression
rules={
'Number_0': 'Digit_0', 'Number_1': 'Digit_1', 'Number_2': 'Digit_2',
'Number_10': 'Number_1 Digit_0', 'Number_11': 'Number_1 Digit_1',
'Number_100': 'Number_10 Digit_0',
'Exp_5': ['Number_5', '( Exp_5 )', 'Exp_1, Operator_+ Exp_4', 'Exp_2, Operator_+ Exp_3',
'Exp_0, Operator_+ Exp_5', 'Exp_3, Operator_+ Exp_2', 'Exp_4, Operator_+ Exp_1',
'Exp_5, Operator_+ Exp_0', 'Exp_1, Operator_* Exp_5'], # more possible combinations
'Operator_+': operator.add, 'Operator_-': operator.sub, 'Operator_*': operator.mul,
'Operator_/': operator.truediv,
'Digit_0': 0, 'Digit_1': 1, 'Digit_2': 2, 'Digit_3': 3, 'Digit_4': 4
},
lexicon={})
g = Grammar("Ali loves Bob", # A example grammer of Ali loves Bob example
rules={
"S_loves_ali_bob": "NP_ali, VP_x_loves_x_bob", "S_loves_bob_ali": "NP_bob, VP_x_loves_x_ali",
"VP_x_loves_x_bob": "Verb_xy_loves_xy NP_bob", "VP_x_loves_x_ali": "Verb_xy_loves_xy NP_ali",
"NP_bob": "Name_bob", "NP_ali": "Name_ali"
},
lexicon={
"Name_ali": "Ali", "Name_bob": "Bob", "Verb_xy_loves_xy": "loves"
})