forked from mkapnick/pacman
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gridworld.py
586 lines (491 loc) · 20.5 KB
/
gridworld.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
# gridworld.py
# ------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to
# http://inst.eecs.berkeley.edu/~cs188/pacman/pacman.html
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
import random
import sys
import mdp
import environment
import util
import optparse
class Gridworld(mdp.MarkovDecisionProcess):
"""
Gridworld
"""
def __init__(self, grid):
# layout
if type(grid) == type([]): grid = makeGrid(grid)
self.grid = grid
# parameters
self.livingReward = 0.0
self.noise = 0.2
def setLivingReward(self, reward):
"""
The (negative) reward for exiting "normal" states.
Note that in the R+N text, this reward is on entering
a state and therefore is not clearly part of the state's
future rewards.
"""
self.livingReward = reward
def setNoise(self, noise):
"""
The probability of moving in an unintended direction.
"""
self.noise = noise
def getPossibleActions(self, state):
"""
Returns list of valid actions for 'state'.
Note that you can request moves into walls and
that "exit" states transition to the terminal
state under the special action "done".
"""
if state == self.grid.terminalState:
return ()
x,y = state
if type(self.grid[x][y]) == int:
return ('exit',)
return ('north','west','south','east')
def getStates(self):
"""
Return list of all states.
"""
# The true terminal state.
states = [self.grid.terminalState]
for x in range(self.grid.width):
for y in range(self.grid.height):
if self.grid[x][y] != '#':
state = (x,y)
states.append(state)
return states
def getReward(self, state, action, nextState):
"""
Get reward for state, action, nextState transition.
Note that the reward depends only on the state being
departed (as in the R+N book examples, which more or
less use this convention).
"""
if state == self.grid.terminalState:
return 0.0
x, y = state
cell = self.grid[x][y]
if type(cell) == int or type(cell) == float:
return cell
return self.livingReward
def getStartState(self):
for x in range(self.grid.width):
for y in range(self.grid.height):
if self.grid[x][y] == 'S':
return (x, y)
raise 'Grid has no start state'
def isTerminal(self, state):
"""
Only the TERMINAL_STATE state is *actually* a terminal state.
The other "exit" states are technically non-terminals with
a single action "exit" which leads to the true terminal state.
This convention is to make the grids line up with the examples
in the R+N textbook.
"""
return state == self.grid.terminalState
def getTransitionStatesAndProbs(self, state, action):
"""
Returns list of (nextState, prob) pairs
representing the states reachable
from 'state' by taking 'action' along
with their transition probabilities.
"""
if action not in self.getPossibleActions(state):
raise "Illegal action!"
if self.isTerminal(state):
return []
x, y = state
if type(self.grid[x][y]) == int or type(self.grid[x][y]) == float:
termState = self.grid.terminalState
return [(termState, 1.0)]
successors = []
northState = (self.__isAllowed(y+1,x) and (x,y+1)) or state
westState = (self.__isAllowed(y,x-1) and (x-1,y)) or state
southState = (self.__isAllowed(y-1,x) and (x,y-1)) or state
eastState = (self.__isAllowed(y,x+1) and (x+1,y)) or state
if action == 'north' or action == 'south':
if action == 'north':
successors.append((northState,1-self.noise))
else:
successors.append((southState,1-self.noise))
massLeft = self.noise
successors.append((westState,massLeft/2.0))
successors.append((eastState,massLeft/2.0))
if action == 'west' or action == 'east':
if action == 'west':
successors.append((westState,1-self.noise))
else:
successors.append((eastState,1-self.noise))
massLeft = self.noise
successors.append((northState,massLeft/2.0))
successors.append((southState,massLeft/2.0))
successors = self.__aggregate(successors)
return successors
def __aggregate(self, statesAndProbs):
counter = util.Counter()
for state, prob in statesAndProbs:
counter[state] += prob
newStatesAndProbs = []
for state, prob in counter.items():
newStatesAndProbs.append((state, prob))
return newStatesAndProbs
def __isAllowed(self, y, x):
if y < 0 or y >= self.grid.height: return False
if x < 0 or x >= self.grid.width: return False
return self.grid[x][y] != '#'
class GridworldEnvironment(environment.Environment):
def __init__(self, gridWorld):
self.gridWorld = gridWorld
self.reset()
def getCurrentState(self):
return self.state
def getPossibleActions(self, state):
return self.gridWorld.getPossibleActions(state)
def doAction(self, action):
state = self.getCurrentState()
(nextState, reward) = self.getRandomNextState(state, action)
self.state = nextState
return (nextState, reward)
def getRandomNextState(self, state, action, randObj=None):
rand = -1.0
if randObj is None:
rand = random.random()
else:
rand = randObj.random()
sum = 0.0
successors = self.gridWorld.getTransitionStatesAndProbs(state, action)
for nextState, prob in successors:
sum += prob
if sum > 1.0:
raise 'Total transition probability more than one; sample failure.'
if rand < sum:
reward = self.gridWorld.getReward(state, action, nextState)
return (nextState, reward)
raise 'Total transition probability less than one; sample failure.'
def reset(self):
self.state = self.gridWorld.getStartState()
class Grid:
"""
A 2-dimensional array of immutables backed by a list of lists. Data is accessed
via grid[x][y] where (x,y) are cartesian coordinates with x horizontal,
y vertical and the origin (0,0) in the bottom left corner.
The __str__ method constructs an output that is oriented appropriately.
"""
def __init__(self, width, height, initialValue=' '):
self.width = width
self.height = height
self.data = [[initialValue for y in range(height)] for x in range(width)]
self.terminalState = 'TERMINAL_STATE'
def __getitem__(self, i):
return self.data[i]
def __setitem__(self, key, item):
self.data[key] = item
def __eq__(self, other):
if other == None: return False
return self.data == other.data
def __hash__(self):
return hash(self.data)
def copy(self):
g = Grid(self.width, self.height)
g.data = [x[:] for x in self.data]
return g
def deepCopy(self):
return self.copy()
def shallowCopy(self):
g = Grid(self.width, self.height)
g.data = self.data
return g
def _getLegacyText(self):
t = [[self.data[x][y] for x in range(self.width)] for y in range(self.height)]
t.reverse()
return t
def __str__(self):
return str(self._getLegacyText())
def makeGrid(gridString):
width, height = len(gridString[0]), len(gridString)
grid = Grid(width, height)
for ybar, line in enumerate(gridString):
y = height - ybar - 1
for x, el in enumerate(line):
grid[x][y] = el
return grid
def getCliffGrid():
grid = [[' ',' ',' ',' ',' '],
['S',' ',' ',' ',10],
[-100,-100, -100, -100, -100]]
return Gridworld(makeGrid(grid))
def getCliffGrid2():
grid = [[' ',' ',' ',' ',' '],
[8,'S',' ',' ',10],
[-100,-100, -100, -100, -100]]
return Gridworld(grid)
def getDiscountGrid():
grid = [[' ',' ',' ',' ',' '],
[' ','#',' ',' ',' '],
[' ','#', 1,'#', 10],
['S',' ',' ',' ',' '],
[-10,-10, -10, -10, -10]]
return Gridworld(grid)
def getBridgeGrid():
grid = [[ '#',-100, -100, -100, -100, -100, '#'],
[ 1, 'S', ' ', ' ', ' ', ' ', 10],
[ '#',-100, -100, -100, -100, -100, '#']]
return Gridworld(grid)
def getBookGrid():
grid = [[' ',' ',' ',+1],
[' ','#',' ',-1],
['S',' ',' ',' ']]
return Gridworld(grid)
def getMazeGrid():
grid = [[' ',' ',' ',+1],
['#','#',' ','#'],
[' ','#',' ',' '],
[' ','#','#',' '],
['S',' ',' ',' ']]
return Gridworld(grid)
def getUserAction(state, actionFunction):
"""
Get an action from the user (rather than the agent).
Used for debugging and lecture demos.
"""
import graphicsUtils
action = None
while True:
keys = graphicsUtils.wait_for_keys()
if 'Up' in keys: action = 'north'
if 'Down' in keys: action = 'south'
if 'Left' in keys: action = 'west'
if 'Right' in keys: action = 'east'
if 'q' in keys: sys.exit(0)
if action == None: continue
break
actions = actionFunction(state)
if action not in actions:
action = actions[0]
return action
def printString(x): print x
def runEpisode(agent, environment, discount, decision, display, message, pause, episode):
returns = 0
totalDiscount = 1.0
environment.reset()
if 'startEpisode' in dir(agent): agent.startEpisode()
message("BEGINNING EPISODE: "+str(episode)+"\n")
while True:
# DISPLAY CURRENT STATE
state = environment.getCurrentState()
display(state)
pause()
# END IF IN A TERMINAL STATE
actions = environment.getPossibleActions(state)
if len(actions) == 0:
message("EPISODE "+str(episode)+" COMPLETE: RETURN WAS "+str(returns)+"\n")
return returns
# GET ACTION (USUALLY FROM AGENT)
action = decision(state)
if action == None:
raise 'Error: Agent returned None action'
# EXECUTE ACTION
nextState, reward = environment.doAction(action)
message("Started in state: "+str(state)+
"\nTook action: "+str(action)+
"\nEnded in state: "+str(nextState)+
"\nGot reward: "+str(reward)+"\n")
# UPDATE LEARNER
if 'observeTransition' in dir(agent):
agent.observeTransition(state, action, nextState, reward)
returns += reward * totalDiscount
totalDiscount *= discount
if 'stopEpisode' in dir(agent):
agent.stopEpisode()
def parseOptions():
optParser = optparse.OptionParser()
optParser.add_option('-d', '--discount',action='store',
type='float',dest='discount',default=0.9,
help='Discount on future (default %default)')
optParser.add_option('-r', '--livingReward',action='store',
type='float',dest='livingReward',default=0.0,
metavar="R", help='Reward for living for a time step (default %default)')
optParser.add_option('-n', '--noise',action='store',
type='float',dest='noise',default=0.2,
metavar="P", help='How often action results in ' +
'unintended direction (default %default)' )
optParser.add_option('-e', '--epsilon',action='store',
type='float',dest='epsilon',default=0.3,
metavar="E", help='Chance of taking a random action in q-learning (default %default)')
optParser.add_option('-l', '--learningRate',action='store',
type='float',dest='learningRate',default=0.5,
metavar="P", help='TD learning rate (default %default)' )
optParser.add_option('-i', '--iterations',action='store',
type='int',dest='iters',default=10,
metavar="K", help='Number of rounds of value iteration (default %default)')
optParser.add_option('-k', '--episodes',action='store',
type='int',dest='episodes',default=1,
metavar="K", help='Number of epsiodes of the MDP to run (default %default)')
optParser.add_option('-g', '--grid',action='store',
metavar="G", type='string',dest='grid',default="BookGrid",
help='Grid to use (case sensitive; options are BookGrid, BridgeGrid, CliffGrid, MazeGrid, default %default)' )
optParser.add_option('-w', '--windowSize', metavar="X", type='int',dest='gridSize',default=150,
help='Request a window width of X pixels *per grid cell* (default %default)')
optParser.add_option('-a', '--agent',action='store', metavar="A",
type='string',dest='agent',default="random",
help='Agent type (options are \'random\', \'value\' and \'q\', default %default)')
optParser.add_option('-t', '--text',action='store_true',
dest='textDisplay',default=False,
help='Use text-only ASCII display')
optParser.add_option('-p', '--pause',action='store_true',
dest='pause',default=False,
help='Pause GUI after each time step when running the MDP')
optParser.add_option('-q', '--quiet',action='store_true',
dest='quiet',default=False,
help='Skip display of any learning episodes')
optParser.add_option('-s', '--speed',action='store', metavar="S", type=float,
dest='speed',default=1.0,
help='Speed of animation, S > 1.0 is faster, 0.0 < S < 1.0 is slower (default %default)')
optParser.add_option('-m', '--manual',action='store_true',
dest='manual',default=False,
help='Manually control agent')
optParser.add_option('-v', '--valueSteps',action='store_true' ,default=False,
help='Display each step of value iteration')
opts, args = optParser.parse_args()
if opts.manual and opts.agent != 'q':
print '## Disabling Agents in Manual Mode (-m) ##'
opts.agent = None
# MANAGE CONFLICTS
if opts.textDisplay or opts.quiet:
# if opts.quiet:
opts.pause = False
# opts.manual = False
if opts.manual:
opts.pause = True
return opts
if __name__ == '__main__':
opts = parseOptions()
###########################
# GET THE GRIDWORLD
###########################
import gridworld
mdpFunction = getattr(gridworld, "get"+opts.grid)
mdp = mdpFunction()
mdp.setLivingReward(opts.livingReward)
mdp.setNoise(opts.noise)
env = gridworld.GridworldEnvironment(mdp)
###########################
# GET THE DISPLAY ADAPTER
###########################
import textGridworldDisplay
display = textGridworldDisplay.TextGridworldDisplay(mdp)
if not opts.textDisplay:
import graphicsGridworldDisplay
display = graphicsGridworldDisplay.GraphicsGridworldDisplay(mdp, opts.gridSize, opts.speed)
try:
display.start()
except KeyboardInterrupt:
sys.exit(0)
###########################
# GET THE AGENT
###########################
import valueIterationAgents, qlearningAgents
a = None
if opts.agent == 'value':
a = valueIterationAgents.ValueIterationAgent(mdp, opts.discount, opts.iters)
elif opts.agent == 'q':
#env.getPossibleActions, opts.discount, opts.learningRate, opts.epsilon
#simulationFn = lambda agent, state: simulation.GridworldSimulation(agent,state,mdp)
gridWorldEnv = GridworldEnvironment(mdp)
actionFn = lambda state: mdp.getPossibleActions(state)
qLearnOpts = {'gamma': opts.discount,
'alpha': opts.learningRate,
'epsilon': opts.epsilon,
'actionFn': actionFn}
a = qlearningAgents.QLearningAgent(**qLearnOpts)
elif opts.agent == 'random':
# # No reason to use the random agent without episodes
if opts.episodes == 0:
opts.episodes = 10
class RandomAgent:
def getAction(self, state):
return random.choice(mdp.getPossibleActions(state))
def getValue(self, state):
return 0.0
def getQValue(self, state, action):
return 0.0
def getPolicy(self, state):
"NOTE: 'random' is a special policy value; don't use it in your code."
return 'random'
def update(self, state, action, nextState, reward):
pass
a = RandomAgent()
else:
if not opts.manual: raise 'Unknown agent type: '+opts.agent
###########################
# RUN EPISODES
###########################
# DISPLAY Q/V VALUES BEFORE SIMULATION OF EPISODES
try:
if not opts.manual and opts.agent == 'value':
if opts.valueSteps:
for i in range(opts.iters):
tempAgent = valueIterationAgents.ValueIterationAgent(mdp, opts.discount, i)
display.displayValues(tempAgent, message = "VALUES AFTER "+str(i)+" ITERATIONS")
display.pause()
display.displayValues(a, message = "VALUES AFTER "+str(opts.iters)+" ITERATIONS")
display.pause()
display.displayQValues(a, message = "Q-VALUES AFTER "+str(opts.iters)+" ITERATIONS")
display.pause()
except KeyboardInterrupt:
sys.exit(0)
# FIGURE OUT WHAT TO DISPLAY EACH TIME STEP (IF ANYTHING)
displayCallback = lambda x: None
if not opts.quiet:
if opts.manual and opts.agent == None:
displayCallback = lambda state: display.displayNullValues(state)
else:
if opts.agent == 'random': displayCallback = lambda state: display.displayValues(a, state, "CURRENT VALUES")
if opts.agent == 'value': displayCallback = lambda state: display.displayValues(a, state, "CURRENT VALUES")
if opts.agent == 'q': displayCallback = lambda state: display.displayQValues(a, state, "CURRENT Q-VALUES")
messageCallback = lambda x: printString(x)
if opts.quiet:
messageCallback = lambda x: None
# FIGURE OUT WHETHER TO WAIT FOR A KEY PRESS AFTER EACH TIME STEP
pauseCallback = lambda : None
if opts.pause:
pauseCallback = lambda : display.pause()
# FIGURE OUT WHETHER THE USER WANTS MANUAL CONTROL (FOR DEBUGGING AND DEMOS)
if opts.manual:
decisionCallback = lambda state : getUserAction(state, mdp.getPossibleActions)
else:
decisionCallback = a.getAction
# RUN EPISODES
if opts.episodes > 0:
print
print "RUNNING", opts.episodes, "EPISODES"
print
returns = 0
for episode in range(1, opts.episodes+1):
returns += runEpisode(a, env, opts.discount, decisionCallback, displayCallback, messageCallback, pauseCallback, episode)
if opts.episodes > 0:
print
print "AVERAGE RETURNS FROM START STATE: "+str((returns+0.0) / opts.episodes)
print
print
# DISPLAY POST-LEARNING VALUES / Q-VALUES
if opts.agent == 'q' and not opts.manual:
try:
display.displayQValues(a, message = "Q-VALUES AFTER "+str(opts.episodes)+" EPISODES")
display.pause()
display.displayValues(a, message = "VALUES AFTER "+str(opts.episodes)+" EPISODES")
display.pause()
except KeyboardInterrupt:
sys.exit(0)