-
Notifications
You must be signed in to change notification settings - Fork 0
/
BST - IsBST.js
108 lines (58 loc) · 1.81 KB
/
BST - IsBST.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
// Define a Node class to represent each node in the binary search tree
class Node {
constructor(data) {
this.data = data;
this.left = null;
this.right = null;
}
}
// Define the BinarySearchTree class to represent the binary search tree
class BinarySearchTree {
constructor() {
this.root = null;
}
// Insertion function to add a new node to the binary search tree
insert(data) {
let newNode = new Node(data);
if (this.root === null) {
this.root = newNode;
return this;
} else {
let current = this.root;
while (true) {
if (data === current.data) {
return undefined;
}
if (data < current.data) {
if (current.left === null) {
current.left = newNode;
return this;
}
current = current.left;
} else {
if (current.right === null) {
current.right = newNode;
return this;
}
current = current.right;
}
}
}
}
isBST(root, min, max) {
if (!root) {
return true;
}
return (root.data > min && root.data < max && this.isBST(root.left, min, root.data) && this.isBST(root.right, root.data, max));
}
}
// =================================TEST CASES=================================
let tree1 = new BinarySearchTree();
tree1.insert(10);
tree1.insert(5);
tree1.insert(15);
tree1.insert(2);
tree1.insert(7);
tree1.insert(12);
tree1.insert(20);
console.log(tree1.isBST(tree1.root, -Infinity, Infinity)); // Output: true