forked from leejet/stable-diffusion.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mmdit.hpp
1002 lines (850 loc) · 45.3 KB
/
mmdit.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef __MMDIT_HPP__
#define __MMDIT_HPP__
#include "ggml_extend.hpp"
#include "model.h"
#define MMDIT_GRAPH_SIZE 10240
struct Mlp : public GGMLBlock {
public:
Mlp(int64_t in_features,
int64_t hidden_features = -1,
int64_t out_features = -1,
bool bias = true) {
// act_layer is always lambda: nn.GELU(approximate="tanh")
// norm_layer is always None
// use_conv is always False
if (hidden_features == -1) {
hidden_features = in_features;
}
if (out_features == -1) {
out_features = in_features;
}
blocks["fc1"] = std::shared_ptr<GGMLBlock>(new Linear(in_features, hidden_features, bias));
blocks["fc2"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_features, out_features, bias));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N, n_token, in_features]
auto fc1 = std::dynamic_pointer_cast<Linear>(blocks["fc1"]);
auto fc2 = std::dynamic_pointer_cast<Linear>(blocks["fc2"]);
x = fc1->forward(ctx, x);
x = ggml_gelu_inplace(ctx, x);
x = fc2->forward(ctx, x);
return x;
}
};
struct PatchEmbed : public GGMLBlock {
// 2D Image to Patch Embedding
protected:
bool flatten;
bool dynamic_img_pad;
int patch_size;
public:
PatchEmbed(int64_t img_size = 224,
int patch_size = 16,
int64_t in_chans = 3,
int64_t embed_dim = 1536,
bool bias = true,
bool flatten = true,
bool dynamic_img_pad = true)
: patch_size(patch_size),
flatten(flatten),
dynamic_img_pad(dynamic_img_pad) {
// img_size is always None
// patch_size is always 2
// in_chans is always 16
// norm_layer is always False
// strict_img_size is always true, but not used
blocks["proj"] = std::shared_ptr<GGMLBlock>(new Conv2d(in_chans,
embed_dim,
{patch_size, patch_size},
{patch_size, patch_size},
{0, 0},
{1, 1},
bias));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N, C, H, W]
// return: [N, H*W, embed_dim]
auto proj = std::dynamic_pointer_cast<Conv2d>(blocks["proj"]);
if (dynamic_img_pad) {
int64_t W = x->ne[0];
int64_t H = x->ne[1];
int pad_h = (patch_size - H % patch_size) % patch_size;
int pad_w = (patch_size - W % patch_size) % patch_size;
x = ggml_pad(ctx, x, pad_w, pad_h, 0, 0); // TODO: reflect pad mode
}
x = proj->forward(ctx, x);
if (flatten) {
x = ggml_reshape_3d(ctx, x, x->ne[0] * x->ne[1], x->ne[2], x->ne[3]);
x = ggml_cont(ctx, ggml_permute(ctx, x, 1, 0, 2, 3));
}
return x;
}
};
struct TimestepEmbedder : public GGMLBlock {
// Embeds scalar timesteps into vector representations.
protected:
int64_t frequency_embedding_size;
public:
TimestepEmbedder(int64_t hidden_size,
int64_t frequency_embedding_size = 256)
: frequency_embedding_size(frequency_embedding_size) {
blocks["mlp.0"] = std::shared_ptr<GGMLBlock>(new Linear(frequency_embedding_size, hidden_size, true, true));
blocks["mlp.2"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, hidden_size, true, true));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* t) {
// t: [N, ]
// return: [N, hidden_size]
auto mlp_0 = std::dynamic_pointer_cast<Linear>(blocks["mlp.0"]);
auto mlp_2 = std::dynamic_pointer_cast<Linear>(blocks["mlp.2"]);
auto t_freq = ggml_nn_timestep_embedding(ctx, t, frequency_embedding_size); // [N, frequency_embedding_size]
auto t_emb = mlp_0->forward(ctx, t_freq);
t_emb = ggml_silu_inplace(ctx, t_emb);
t_emb = mlp_2->forward(ctx, t_emb);
return t_emb;
}
};
struct VectorEmbedder : public GGMLBlock {
// Embeds a flat vector of dimension input_dim
public:
VectorEmbedder(int64_t input_dim,
int64_t hidden_size) {
blocks["mlp.0"] = std::shared_ptr<GGMLBlock>(new Linear(input_dim, hidden_size, true, true));
blocks["mlp.2"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, hidden_size, true, true));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N, input_dim]
// return: [N, hidden_size]
auto mlp_0 = std::dynamic_pointer_cast<Linear>(blocks["mlp.0"]);
auto mlp_2 = std::dynamic_pointer_cast<Linear>(blocks["mlp.2"]);
x = mlp_0->forward(ctx, x);
x = ggml_silu_inplace(ctx, x);
x = mlp_2->forward(ctx, x);
return x;
}
};
class RMSNorm : public UnaryBlock {
protected:
int64_t hidden_size;
float eps;
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, std::string prefix = "") {
enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32;
params["weight"] = ggml_new_tensor_1d(ctx, wtype, hidden_size);
}
public:
RMSNorm(int64_t hidden_size,
float eps = 1e-06f)
: hidden_size(hidden_size),
eps(eps) {}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
struct ggml_tensor* w = params["weight"];
x = ggml_rms_norm(ctx, x, eps);
x = ggml_mul(ctx, x, w);
return x;
}
};
class SelfAttention : public GGMLBlock {
public:
int64_t num_heads;
bool pre_only;
std::string qk_norm;
public:
SelfAttention(int64_t dim,
int64_t num_heads = 8,
std::string qk_norm = "",
bool qkv_bias = false,
bool pre_only = false)
: num_heads(num_heads), pre_only(pre_only), qk_norm(qk_norm) {
int64_t d_head = dim / num_heads;
blocks["qkv"] = std::shared_ptr<GGMLBlock>(new Linear(dim, dim * 3, qkv_bias));
if (!pre_only) {
blocks["proj"] = std::shared_ptr<GGMLBlock>(new Linear(dim, dim));
}
if (qk_norm == "rms") {
blocks["ln_q"] = std::shared_ptr<GGMLBlock>(new RMSNorm(d_head, 1.0e-6));
blocks["ln_k"] = std::shared_ptr<GGMLBlock>(new RMSNorm(d_head, 1.0e-6));
} else if (qk_norm == "ln") {
blocks["ln_q"] = std::shared_ptr<GGMLBlock>(new LayerNorm(d_head, 1.0e-6));
blocks["ln_k"] = std::shared_ptr<GGMLBlock>(new LayerNorm(d_head, 1.0e-6));
}
}
std::vector<struct ggml_tensor*> pre_attention(struct ggml_context* ctx, struct ggml_tensor* x) {
auto qkv_proj = std::dynamic_pointer_cast<Linear>(blocks["qkv"]);
auto qkv = qkv_proj->forward(ctx, x);
auto qkv_vec = split_qkv(ctx, qkv);
int64_t head_dim = qkv_vec[0]->ne[0] / num_heads;
auto q = ggml_reshape_4d(ctx, qkv_vec[0], head_dim, num_heads, qkv_vec[0]->ne[1], qkv_vec[0]->ne[2]); // [N, n_token, n_head, d_head]
auto k = ggml_reshape_4d(ctx, qkv_vec[1], head_dim, num_heads, qkv_vec[1]->ne[1], qkv_vec[1]->ne[2]); // [N, n_token, n_head, d_head]
auto v = qkv_vec[2]; // [N, n_token, n_head*d_head]
if (qk_norm == "rms" || qk_norm == "ln") {
auto ln_q = std::dynamic_pointer_cast<UnaryBlock>(blocks["ln_q"]);
auto ln_k = std::dynamic_pointer_cast<UnaryBlock>(blocks["ln_k"]);
q = ln_q->forward(ctx, q);
k = ln_k->forward(ctx, k);
}
q = ggml_reshape_3d(ctx, q, q->ne[0] * q->ne[1], q->ne[2], q->ne[3]); // [N, n_token, n_head*d_head]
k = ggml_reshape_3d(ctx, k, k->ne[0] * k->ne[1], k->ne[2], k->ne[3]); // [N, n_token, n_head*d_head]
return {q, k, v};
}
struct ggml_tensor* post_attention(struct ggml_context* ctx, struct ggml_tensor* x) {
GGML_ASSERT(!pre_only);
auto proj = std::dynamic_pointer_cast<Linear>(blocks["proj"]);
x = proj->forward(ctx, x); // [N, n_token, dim]
return x;
}
// x: [N, n_token, dim]
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
auto qkv = pre_attention(ctx, x);
x = ggml_nn_attention_ext(ctx, qkv[0], qkv[1], qkv[2], num_heads); // [N, n_token, dim]
x = post_attention(ctx, x); // [N, n_token, dim]
return x;
}
};
__STATIC_INLINE__ struct ggml_tensor* modulate(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* shift,
struct ggml_tensor* scale) {
// x: [N, L, C]
// scale: [N, C]
// shift: [N, C]
scale = ggml_reshape_3d(ctx, scale, scale->ne[0], 1, scale->ne[1]); // [N, 1, C]
shift = ggml_reshape_3d(ctx, shift, shift->ne[0], 1, shift->ne[1]); // [N, 1, C]
x = ggml_add(ctx, x, ggml_mul(ctx, x, scale));
x = ggml_add(ctx, x, shift);
return x;
}
struct DismantledBlock : public GGMLBlock {
// A DiT block with gated adaptive layer norm (adaLN) conditioning.
public:
int64_t num_heads;
bool pre_only;
bool self_attn;
public:
DismantledBlock(int64_t hidden_size,
int64_t num_heads,
float mlp_ratio = 4.0,
std::string qk_norm = "",
bool qkv_bias = false,
bool pre_only = false,
bool self_attn = false)
: num_heads(num_heads), pre_only(pre_only), self_attn(self_attn) {
// rmsnorm is always Flase
// scale_mod_only is always Flase
// swiglu is always Flase
blocks["norm1"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size, 1e-06f, false));
blocks["attn"] = std::shared_ptr<GGMLBlock>(new SelfAttention(hidden_size, num_heads, qk_norm, qkv_bias, pre_only));
if (self_attn) {
blocks["attn2"] = std::shared_ptr<GGMLBlock>(new SelfAttention(hidden_size, num_heads, qk_norm, qkv_bias, false));
}
if (!pre_only) {
blocks["norm2"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size, 1e-06f, false));
int64_t mlp_hidden_dim = (int64_t)(hidden_size * mlp_ratio);
blocks["mlp"] = std::shared_ptr<GGMLBlock>(new Mlp(hidden_size, mlp_hidden_dim));
}
int64_t n_mods = 6;
if (pre_only) {
n_mods = 2;
}
if (self_attn) {
n_mods = 9;
}
blocks["adaLN_modulation.1"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, n_mods * hidden_size));
}
std::tuple<std::vector<struct ggml_tensor*>, std::vector<struct ggml_tensor*>, std::vector<struct ggml_tensor*>> pre_attention_x(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* c) {
GGML_ASSERT(self_attn);
// x: [N, n_token, hidden_size]
// c: [N, hidden_size]
auto norm1 = std::dynamic_pointer_cast<LayerNorm>(blocks["norm1"]);
auto attn = std::dynamic_pointer_cast<SelfAttention>(blocks["attn"]);
auto attn2 = std::dynamic_pointer_cast<SelfAttention>(blocks["attn2"]);
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
int64_t n_mods = 9;
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx, c)); // [N, n_mods * hidden_size]
m = ggml_reshape_3d(ctx, m, c->ne[0], n_mods, c->ne[1]); // [N, n_mods, hidden_size]
m = ggml_cont(ctx, ggml_permute(ctx, m, 0, 2, 1, 3)); // [n_mods, N, hidden_size]
int64_t offset = m->nb[1] * m->ne[1];
auto shift_msa = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); // [N, hidden_size]
auto scale_msa = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); // [N, hidden_size]
auto gate_msa = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 2); // [N, hidden_size]
auto shift_mlp = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 3); // [N, hidden_size]
auto scale_mlp = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 4); // [N, hidden_size]
auto gate_mlp = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 5); // [N, hidden_size]
auto shift_msa2 = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 6); // [N, hidden_size]
auto scale_msa2 = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 7); // [N, hidden_size]
auto gate_msa2 = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 8); // [N, hidden_size]
auto x_norm = norm1->forward(ctx, x);
auto attn_in = modulate(ctx, x_norm, shift_msa, scale_msa);
auto qkv = attn->pre_attention(ctx, attn_in);
auto attn2_in = modulate(ctx, x_norm, shift_msa2, scale_msa2);
auto qkv2 = attn2->pre_attention(ctx, attn2_in);
return {qkv, qkv2, {x, gate_msa, shift_mlp, scale_mlp, gate_mlp, gate_msa2}};
}
std::pair<std::vector<struct ggml_tensor*>, std::vector<struct ggml_tensor*>> pre_attention(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* c) {
// x: [N, n_token, hidden_size]
// c: [N, hidden_size]
auto norm1 = std::dynamic_pointer_cast<LayerNorm>(blocks["norm1"]);
auto attn = std::dynamic_pointer_cast<SelfAttention>(blocks["attn"]);
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
int64_t n_mods = 6;
if (pre_only) {
n_mods = 2;
}
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx, c)); // [N, n_mods * hidden_size]
m = ggml_reshape_3d(ctx, m, c->ne[0], n_mods, c->ne[1]); // [N, n_mods, hidden_size]
m = ggml_cont(ctx, ggml_permute(ctx, m, 0, 2, 1, 3)); // [n_mods, N, hidden_size]
int64_t offset = m->nb[1] * m->ne[1];
auto shift_msa = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); // [N, hidden_size]
auto scale_msa = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); // [N, hidden_size]
if (!pre_only) {
auto gate_msa = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 2); // [N, hidden_size]
auto shift_mlp = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 3); // [N, hidden_size]
auto scale_mlp = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 4); // [N, hidden_size]
auto gate_mlp = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 5); // [N, hidden_size]
auto attn_in = modulate(ctx, norm1->forward(ctx, x), shift_msa, scale_msa);
auto qkv = attn->pre_attention(ctx, attn_in);
return {qkv, {x, gate_msa, shift_mlp, scale_mlp, gate_mlp}};
} else {
auto attn_in = modulate(ctx, norm1->forward(ctx, x), shift_msa, scale_msa);
auto qkv = attn->pre_attention(ctx, attn_in);
return {qkv, {NULL, NULL, NULL, NULL, NULL}};
}
}
struct ggml_tensor* post_attention_x(struct ggml_context* ctx,
struct ggml_tensor* attn_out,
struct ggml_tensor* attn2_out,
struct ggml_tensor* x,
struct ggml_tensor* gate_msa,
struct ggml_tensor* shift_mlp,
struct ggml_tensor* scale_mlp,
struct ggml_tensor* gate_mlp,
struct ggml_tensor* gate_msa2) {
// attn_out: [N, n_token, hidden_size]
// x: [N, n_token, hidden_size]
// gate_msa: [N, hidden_size]
// shift_mlp: [N, hidden_size]
// scale_mlp: [N, hidden_size]
// gate_mlp: [N, hidden_size]
// return: [N, n_token, hidden_size]
GGML_ASSERT(!pre_only);
auto attn = std::dynamic_pointer_cast<SelfAttention>(blocks["attn"]);
auto attn2 = std::dynamic_pointer_cast<SelfAttention>(blocks["attn2"]);
auto norm2 = std::dynamic_pointer_cast<LayerNorm>(blocks["norm2"]);
auto mlp = std::dynamic_pointer_cast<Mlp>(blocks["mlp"]);
gate_msa = ggml_reshape_3d(ctx, gate_msa, gate_msa->ne[0], 1, gate_msa->ne[1]); // [N, 1, hidden_size]
gate_mlp = ggml_reshape_3d(ctx, gate_mlp, gate_mlp->ne[0], 1, gate_mlp->ne[1]); // [N, 1, hidden_size]
gate_msa2 = ggml_reshape_3d(ctx, gate_msa2, gate_msa2->ne[0], 1, gate_msa2->ne[1]); // [N, 1, hidden_size]
attn_out = attn->post_attention(ctx, attn_out);
attn2_out = attn2->post_attention(ctx, attn2_out);
x = ggml_add(ctx, x, ggml_mul(ctx, attn_out, gate_msa));
x = ggml_add(ctx, x, ggml_mul(ctx, attn2_out, gate_msa2));
auto mlp_out = mlp->forward(ctx, modulate(ctx, norm2->forward(ctx, x), shift_mlp, scale_mlp));
x = ggml_add(ctx, x, ggml_mul(ctx, mlp_out, gate_mlp));
return x;
}
struct ggml_tensor* post_attention(struct ggml_context* ctx,
struct ggml_tensor* attn_out,
struct ggml_tensor* x,
struct ggml_tensor* gate_msa,
struct ggml_tensor* shift_mlp,
struct ggml_tensor* scale_mlp,
struct ggml_tensor* gate_mlp) {
// attn_out: [N, n_token, hidden_size]
// x: [N, n_token, hidden_size]
// gate_msa: [N, hidden_size]
// shift_mlp: [N, hidden_size]
// scale_mlp: [N, hidden_size]
// gate_mlp: [N, hidden_size]
// return: [N, n_token, hidden_size]
GGML_ASSERT(!pre_only);
auto attn = std::dynamic_pointer_cast<SelfAttention>(blocks["attn"]);
auto norm2 = std::dynamic_pointer_cast<LayerNorm>(blocks["norm2"]);
auto mlp = std::dynamic_pointer_cast<Mlp>(blocks["mlp"]);
gate_msa = ggml_reshape_3d(ctx, gate_msa, gate_msa->ne[0], 1, gate_msa->ne[1]); // [N, 1, hidden_size]
gate_mlp = ggml_reshape_3d(ctx, gate_mlp, gate_mlp->ne[0], 1, gate_mlp->ne[1]); // [N, 1, hidden_size]
attn_out = attn->post_attention(ctx, attn_out);
x = ggml_add(ctx, x, ggml_mul(ctx, attn_out, gate_msa));
auto mlp_out = mlp->forward(ctx, modulate(ctx, norm2->forward(ctx, x), shift_mlp, scale_mlp));
x = ggml_add(ctx, x, ggml_mul(ctx, mlp_out, gate_mlp));
return x;
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* c) {
// x: [N, n_token, hidden_size]
// c: [N, hidden_size]
// return: [N, n_token, hidden_size]
auto attn = std::dynamic_pointer_cast<SelfAttention>(blocks["attn"]);
if (self_attn) {
auto qkv_intermediates = pre_attention_x(ctx, x, c);
// auto qkv = qkv_intermediates.first;
// auto intermediates = qkv_intermediates.second;
// no longer a pair, but a tuple
auto qkv = std::get<0>(qkv_intermediates);
auto qkv2 = std::get<1>(qkv_intermediates);
auto intermediates = std::get<2>(qkv_intermediates);
auto attn_out = ggml_nn_attention_ext(ctx, qkv[0], qkv[1], qkv[2], num_heads); // [N, n_token, dim]
auto attn2_out = ggml_nn_attention_ext(ctx, qkv2[0], qkv2[1], qkv2[2], num_heads); // [N, n_token, dim]
x = post_attention_x(ctx,
attn_out,
attn2_out,
intermediates[0],
intermediates[1],
intermediates[2],
intermediates[3],
intermediates[4],
intermediates[5]);
return x; // [N, n_token, dim]
} else {
auto qkv_intermediates = pre_attention(ctx, x, c);
auto qkv = qkv_intermediates.first;
auto intermediates = qkv_intermediates.second;
auto attn_out = ggml_nn_attention_ext(ctx, qkv[0], qkv[1], qkv[2], num_heads); // [N, n_token, dim]
x = post_attention(ctx,
attn_out,
intermediates[0],
intermediates[1],
intermediates[2],
intermediates[3],
intermediates[4]);
return x; // [N, n_token, dim]
}
}
};
__STATIC_INLINE__ std::pair<struct ggml_tensor*, struct ggml_tensor*>
block_mixing(struct ggml_context* ctx,
struct ggml_tensor* context,
struct ggml_tensor* x,
struct ggml_tensor* c,
std::shared_ptr<DismantledBlock> context_block,
std::shared_ptr<DismantledBlock> x_block) {
// context: [N, n_context, hidden_size]
// x: [N, n_token, hidden_size]
// c: [N, hidden_size]
auto context_qkv_intermediates = context_block->pre_attention(ctx, context, c);
auto context_qkv = context_qkv_intermediates.first;
auto context_intermediates = context_qkv_intermediates.second;
std::vector<ggml_tensor*> x_qkv, x_qkv2, x_intermediates;
if (x_block->self_attn) {
auto x_qkv_intermediates = x_block->pre_attention_x(ctx, x, c);
x_qkv = std::get<0>(x_qkv_intermediates);
x_qkv2 = std::get<1>(x_qkv_intermediates);
x_intermediates = std::get<2>(x_qkv_intermediates);
} else {
auto x_qkv_intermediates = x_block->pre_attention(ctx, x, c);
x_qkv = x_qkv_intermediates.first;
x_intermediates = x_qkv_intermediates.second;
}
std::vector<struct ggml_tensor*> qkv;
for (int i = 0; i < 3; i++) {
qkv.push_back(ggml_concat(ctx, context_qkv[i], x_qkv[i], 1));
}
auto attn = ggml_nn_attention_ext(ctx, qkv[0], qkv[1], qkv[2], x_block->num_heads); // [N, n_context + n_token, hidden_size]
attn = ggml_cont(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3)); // [n_context + n_token, N, hidden_size]
auto context_attn = ggml_view_3d(ctx,
attn,
attn->ne[0],
attn->ne[1],
context->ne[1],
attn->nb[1],
attn->nb[2],
0); // [n_context, N, hidden_size]
context_attn = ggml_cont(ctx, ggml_permute(ctx, context_attn, 0, 2, 1, 3)); // [N, n_context, hidden_size]
auto x_attn = ggml_view_3d(ctx,
attn,
attn->ne[0],
attn->ne[1],
x->ne[1],
attn->nb[1],
attn->nb[2],
attn->nb[2] * context->ne[1]); // [n_token, N, hidden_size]
x_attn = ggml_cont(ctx, ggml_permute(ctx, x_attn, 0, 2, 1, 3)); // [N, n_token, hidden_size]
if (!context_block->pre_only) {
context = context_block->post_attention(ctx,
context_attn,
context_intermediates[0],
context_intermediates[1],
context_intermediates[2],
context_intermediates[3],
context_intermediates[4]);
} else {
context = NULL;
}
if (x_block->self_attn) {
auto attn2 = ggml_nn_attention_ext(ctx, x_qkv2[0], x_qkv2[1], x_qkv2[2], x_block->num_heads); // [N, n_token, hidden_size]
x = x_block->post_attention_x(ctx,
x_attn,
attn2,
x_intermediates[0],
x_intermediates[1],
x_intermediates[2],
x_intermediates[3],
x_intermediates[4],
x_intermediates[5]);
} else {
x = x_block->post_attention(ctx,
x_attn,
x_intermediates[0],
x_intermediates[1],
x_intermediates[2],
x_intermediates[3],
x_intermediates[4]);
}
return {context, x};
}
struct JointBlock : public GGMLBlock {
public:
JointBlock(int64_t hidden_size,
int64_t num_heads,
float mlp_ratio = 4.0,
std::string qk_norm = "",
bool qkv_bias = false,
bool pre_only = false,
bool self_attn_x = false) {
blocks["context_block"] = std::shared_ptr<GGMLBlock>(new DismantledBlock(hidden_size, num_heads, mlp_ratio, qk_norm, qkv_bias, pre_only));
blocks["x_block"] = std::shared_ptr<GGMLBlock>(new DismantledBlock(hidden_size, num_heads, mlp_ratio, qk_norm, qkv_bias, false, self_attn_x));
}
std::pair<struct ggml_tensor*, struct ggml_tensor*> forward(struct ggml_context* ctx,
struct ggml_tensor* context,
struct ggml_tensor* x,
struct ggml_tensor* c) {
auto context_block = std::dynamic_pointer_cast<DismantledBlock>(blocks["context_block"]);
auto x_block = std::dynamic_pointer_cast<DismantledBlock>(blocks["x_block"]);
return block_mixing(ctx, context, x, c, context_block, x_block);
}
};
struct FinalLayer : public GGMLBlock {
// The final layer of DiT.
public:
FinalLayer(int64_t hidden_size,
int64_t patch_size,
int64_t out_channels) {
// total_out_channels is always None
blocks["norm_final"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size, 1e-06f, false));
blocks["linear"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, patch_size * patch_size * out_channels, true, true));
blocks["adaLN_modulation.1"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, 2 * hidden_size));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* c) {
// x: [N, n_token, hidden_size]
// c: [N, hidden_size]
// return: [N, n_token, patch_size * patch_size * out_channels]
auto norm_final = std::dynamic_pointer_cast<LayerNorm>(blocks["norm_final"]);
auto linear = std::dynamic_pointer_cast<Linear>(blocks["linear"]);
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx, c)); // [N, 2 * hidden_size]
m = ggml_reshape_3d(ctx, m, c->ne[0], 2, c->ne[1]); // [N, 2, hidden_size]
m = ggml_cont(ctx, ggml_permute(ctx, m, 0, 2, 1, 3)); // [2, N, hidden_size]
int64_t offset = m->nb[1] * m->ne[1];
auto shift = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); // [N, hidden_size]
auto scale = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); // [N, hidden_size]
x = modulate(ctx, norm_final->forward(ctx, x), shift, scale);
x = linear->forward(ctx, x);
return x;
}
};
struct MMDiT : public GGMLBlock {
// Diffusion model with a Transformer backbone.
protected:
int64_t input_size = -1;
int64_t patch_size = 2;
int64_t in_channels = 16;
int64_t d_self = -1; // >=0 for MMdiT-X
int64_t depth = 24;
float mlp_ratio = 4.0f;
int64_t adm_in_channels = 2048;
int64_t out_channels = 16;
int64_t pos_embed_max_size = 192;
int64_t num_patchs = 36864; // 192 * 192
int64_t context_size = 4096;
int64_t context_embedder_out_dim = 1536;
int64_t hidden_size;
std::string qk_norm;
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, std::string prefix = "") {
enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "pos_embed") != tensor_types.end()) ? tensor_types[prefix + "pos_embed"] : GGML_TYPE_F32;
params["pos_embed"] = ggml_new_tensor_3d(ctx, wtype, hidden_size, num_patchs, 1);
}
public:
MMDiT(std::map<std::string, enum ggml_type>& tensor_types) {
// input_size is always None
// learn_sigma is always False
// register_length is alwalys 0
// rmsnorm is alwalys False
// scale_mod_only is alwalys False
// swiglu is alwalys False
// qkv_bias is always True
// context_processor_layers is always None
// pos_embed_scaling_factor is not used
// pos_embed_offset is not used
// context_embedder_config is always {'target': 'torch.nn.Linear', 'params': {'in_features': 4096, 'out_features': 1536}}
// read tensors from tensor_types
for (auto pair : tensor_types) {
std::string tensor_name = pair.first;
if (tensor_name.find("model.diffusion_model.") == std::string::npos)
continue;
size_t jb = tensor_name.find("joint_blocks.");
if (jb != std::string::npos) {
tensor_name = tensor_name.substr(jb); // remove prefix
int block_depth = atoi(tensor_name.substr(13, tensor_name.find(".", 13)).c_str());
if (block_depth + 1 > depth) {
depth = block_depth + 1;
}
if (tensor_name.find("attn.ln") != std::string::npos) {
if (tensor_name.find(".bias") != std::string::npos) {
qk_norm = "ln";
} else {
qk_norm = "rms";
}
}
if (tensor_name.find("attn2") != std::string::npos) {
if (block_depth > d_self) {
d_self = block_depth;
}
}
}
}
if (d_self >= 0) {
pos_embed_max_size *= 2;
num_patchs *= 4;
}
LOG_INFO("MMDiT layers: %d (including %d MMDiT-x layers)", depth, d_self + 1);
int64_t default_out_channels = in_channels;
hidden_size = 64 * depth;
context_embedder_out_dim = 64 * depth;
int64_t num_heads = depth;
blocks["x_embedder"] = std::shared_ptr<GGMLBlock>(new PatchEmbed(input_size, patch_size, in_channels, hidden_size, true));
blocks["t_embedder"] = std::shared_ptr<GGMLBlock>(new TimestepEmbedder(hidden_size));
if (adm_in_channels != -1) {
blocks["y_embedder"] = std::shared_ptr<GGMLBlock>(new VectorEmbedder(adm_in_channels, hidden_size));
}
blocks["context_embedder"] = std::shared_ptr<GGMLBlock>(new Linear(4096, context_embedder_out_dim, true, true));
for (int i = 0; i < depth; i++) {
blocks["joint_blocks." + std::to_string(i)] = std::shared_ptr<GGMLBlock>(new JointBlock(hidden_size,
num_heads,
mlp_ratio,
qk_norm,
true,
i == depth - 1,
i <= d_self));
}
blocks["final_layer"] = std::shared_ptr<GGMLBlock>(new FinalLayer(hidden_size, patch_size, out_channels));
}
struct ggml_tensor*
cropped_pos_embed(struct ggml_context* ctx,
int64_t h,
int64_t w) {
auto pos_embed = params["pos_embed"];
h = (h + 1) / patch_size;
w = (w + 1) / patch_size;
GGML_ASSERT(h <= pos_embed_max_size && h > 0);
GGML_ASSERT(w <= pos_embed_max_size && w > 0);
int64_t top = (pos_embed_max_size - h) / 2;
int64_t left = (pos_embed_max_size - w) / 2;
auto spatial_pos_embed = ggml_reshape_3d(ctx, pos_embed, hidden_size, pos_embed_max_size, pos_embed_max_size);
// spatial_pos_embed = spatial_pos_embed[:, top : top + h, left : left + w, :]
spatial_pos_embed = ggml_view_3d(ctx,
spatial_pos_embed,
hidden_size,
pos_embed_max_size,
h,
spatial_pos_embed->nb[1],
spatial_pos_embed->nb[2],
spatial_pos_embed->nb[2] * top); // [h, pos_embed_max_size, hidden_size]
spatial_pos_embed = ggml_cont(ctx, ggml_permute(ctx, spatial_pos_embed, 0, 2, 1, 3)); // [pos_embed_max_size, h, hidden_size]
spatial_pos_embed = ggml_view_3d(ctx,
spatial_pos_embed,
hidden_size,
h,
w,
spatial_pos_embed->nb[1],
spatial_pos_embed->nb[2],
spatial_pos_embed->nb[2] * left); // [w, h, hidden_size]
spatial_pos_embed = ggml_cont(ctx, ggml_permute(ctx, spatial_pos_embed, 0, 2, 1, 3)); // [h, w, hidden_size]
spatial_pos_embed = ggml_reshape_3d(ctx, spatial_pos_embed, hidden_size, h * w, 1); // [1, h*w, hidden_size]
return spatial_pos_embed;
}
struct ggml_tensor* unpatchify(struct ggml_context* ctx,
struct ggml_tensor* x,
int64_t h,
int64_t w) {
// x: [N, H*W, patch_size * patch_size * C]
// return: [N, C, H, W]
int64_t n = x->ne[2];
int64_t c = out_channels;
int64_t p = patch_size;
h = (h + 1) / p;
w = (w + 1) / p;
GGML_ASSERT(h * w == x->ne[1]);
x = ggml_reshape_4d(ctx, x, c, p * p, w * h, n); // [N, H*W, P*P, C]
x = ggml_cont(ctx, ggml_permute(ctx, x, 2, 0, 1, 3)); // [N, C, H*W, P*P]
x = ggml_reshape_4d(ctx, x, p, p, w, h * c * n); // [N*C*H, W, P, P]
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // [N*C*H, P, W, P]
x = ggml_reshape_4d(ctx, x, p * w, p * h, c, n); // [N, C, H*P, W*P]
return x;
}
struct ggml_tensor* forward_core_with_concat(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* c_mod,
struct ggml_tensor* context,
std::vector<int> skip_layers = std::vector<int>()) {
// x: [N, H*W, hidden_size]
// context: [N, n_context, d_context]
// c: [N, hidden_size]
// return: [N, N*W, patch_size * patch_size * out_channels]
auto final_layer = std::dynamic_pointer_cast<FinalLayer>(blocks["final_layer"]);
for (int i = 0; i < depth; i++) {
// skip iteration if i is in skip_layers
if (skip_layers.size() > 0 && std::find(skip_layers.begin(), skip_layers.end(), i) != skip_layers.end()) {
continue;
}
auto block = std::dynamic_pointer_cast<JointBlock>(blocks["joint_blocks." + std::to_string(i)]);
auto context_x = block->forward(ctx, context, x, c_mod);
context = context_x.first;
x = context_x.second;
}
x = final_layer->forward(ctx, x, c_mod); // (N, T, patch_size ** 2 * out_channels)
return x;
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* t,
struct ggml_tensor* y = NULL,
struct ggml_tensor* context = NULL,
std::vector<int> skip_layers = std::vector<int>()) {
// Forward pass of DiT.
// x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
// t: (N,) tensor of diffusion timesteps
// y: (N, adm_in_channels) tensor of class labels
// context: (N, L, D)
// return: (N, C, H, W)
auto x_embedder = std::dynamic_pointer_cast<PatchEmbed>(blocks["x_embedder"]);
auto t_embedder = std::dynamic_pointer_cast<TimestepEmbedder>(blocks["t_embedder"]);
int64_t w = x->ne[0];
int64_t h = x->ne[1];
auto patch_embed = x_embedder->forward(ctx, x); // [N, H*W, hidden_size]
auto pos_embed = cropped_pos_embed(ctx, h, w); // [1, H*W, hidden_size]
x = ggml_add(ctx, patch_embed, pos_embed); // [N, H*W, hidden_size]
auto c = t_embedder->forward(ctx, t); // [N, hidden_size]
if (y != NULL && adm_in_channels != -1) {
auto y_embedder = std::dynamic_pointer_cast<VectorEmbedder>(blocks["y_embedder"]);
y = y_embedder->forward(ctx, y); // [N, hidden_size]
c = ggml_add(ctx, c, y);
}
if (context != NULL) {
auto context_embedder = std::dynamic_pointer_cast<Linear>(blocks["context_embedder"]);
context = context_embedder->forward(ctx, context); // [N, L, D] aka [N, L, 1536]
}
x = forward_core_with_concat(ctx, x, c, context, skip_layers); // (N, H*W, patch_size ** 2 * out_channels)
x = unpatchify(ctx, x, h, w); // [N, C, H, W]
return x;
}
};
struct MMDiTRunner : public GGMLRunner {
MMDiT mmdit;
static std::map<std::string, enum ggml_type> empty_tensor_types;
MMDiTRunner(ggml_backend_t backend,
std::map<std::string, enum ggml_type>& tensor_types = empty_tensor_types,
const std::string prefix = "")
: GGMLRunner(backend), mmdit(tensor_types) {
mmdit.init(params_ctx, tensor_types, prefix);
}
std::string get_desc() {
return "mmdit";
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
mmdit.get_param_tensors(tensors, prefix);
}
struct ggml_cgraph* build_graph(struct ggml_tensor* x,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* y,
std::vector<int> skip_layers = std::vector<int>()) {
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, MMDIT_GRAPH_SIZE, false);
x = to_backend(x);
context = to_backend(context);
y = to_backend(y);
timesteps = to_backend(timesteps);
struct ggml_tensor* out = mmdit.forward(compute_ctx,
x,
timesteps,
y,
context,
skip_layers);
ggml_build_forward_expand(gf, out);
return gf;
}
void compute(int n_threads,
struct ggml_tensor* x,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* y,
struct ggml_tensor** output = NULL,
struct ggml_context* output_ctx = NULL,
std::vector<int> skip_layers = std::vector<int>()) {
// x: [N, in_channels, h, w]
// timesteps: [N, ]
// context: [N, max_position, hidden_size]([N, 154, 4096]) or [1, max_position, hidden_size]
// y: [N, adm_in_channels] or [1, adm_in_channels]
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(x, timesteps, context, y, skip_layers);
};
GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
}
void test() {
struct ggml_init_params params;
params.mem_size = static_cast<size_t>(10 * 1024 * 1024); // 10 MB
params.mem_buffer = NULL;
params.no_alloc = false;
struct ggml_context* work_ctx = ggml_init(params);
GGML_ASSERT(work_ctx != NULL);
{
// cpu f16: pass
// cpu f32: pass
// cuda f16: pass
// cuda f32: pass
auto x = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 128, 128, 16, 1);
std::vector<float> timesteps_vec(1, 999.f);
auto timesteps = vector_to_ggml_tensor(work_ctx, timesteps_vec);
ggml_set_f32(x, 0.01f);
// print_ggml_tensor(x);
auto context = ggml_new_tensor_3d(work_ctx, GGML_TYPE_F32, 4096, 154, 1);
ggml_set_f32(context, 0.01f);
// print_ggml_tensor(context);
auto y = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 2048, 1);
ggml_set_f32(y, 0.01f);
// print_ggml_tensor(y);
struct ggml_tensor* out = NULL;
int t0 = ggml_time_ms();
compute(8, x, timesteps, context, y, &out, work_ctx);
int t1 = ggml_time_ms();
print_ggml_tensor(out);
LOG_DEBUG("mmdit test done in %dms", t1 - t0);
}
}
static void load_from_file_and_test(const std::string& file_path) {
// ggml_backend_t backend = ggml_backend_cuda_init(0);
ggml_backend_t backend = ggml_backend_cpu_init();
ggml_type model_data_type = GGML_TYPE_F16;
std::shared_ptr<MMDiTRunner> mmdit = std::shared_ptr<MMDiTRunner>(new MMDiTRunner(backend));
{
LOG_INFO("loading from '%s'", file_path.c_str());
mmdit->alloc_params_buffer();
std::map<std::string, ggml_tensor*> tensors;
mmdit->get_param_tensors(tensors, "model.diffusion_model");
ModelLoader model_loader;
if (!model_loader.init_from_file(file_path)) {
LOG_ERROR("init model loader from file failed: '%s'", file_path.c_str());
return;
}
bool success = model_loader.load_tensors(tensors, backend);
if (!success) {
LOG_ERROR("load tensors from model loader failed");
return;
}
LOG_INFO("mmdit model loaded");
}
mmdit->test();
}
};