diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index de6d3eb4137b9..8d2204969c0cb 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -222,13 +222,18 @@ struct kl_divergence_result { double sum_kld2 = 0; double sum_nll_diff = 0; double sum_nll_diff2 = 0; + size_t n_same_top = 0; size_t count = 0; }; -static void log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) { +static double log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) { float max_logit = logits[0]; + int imax = 0; for (int i = 1; i < n_vocab; ++i) { - max_logit = std::max(max_logit, logits[i]); + if (logits[i] > max_logit) { + max_logit = logits[i]; + imax = i; + } } double sum_exp = 0.0; for (int i = 0; i < n_vocab; ++i) { @@ -247,8 +252,14 @@ static void log_softmax(int n_vocab, const float * logits, const uint16_t * base kld.sum_nll_diff2 += nll*nll; max_logit += log_sum_exp; double sum = 0; + int imax_base = -1; + float p_log_base_max = 0; for (int i = 0; i < n_vocab; ++i) { const float p_log_base = scale*base_log_prob[i] + min_log_prob; + if (i == 0 || p_log_base > p_log_base_max) { + p_log_base_max = p_log_base; + imax_base = i; + } if (p_log_base > -16.f) { const float p_base = expf(p_log_base); sum += p_base * (p_log_base - logits[i] + max_logit); @@ -257,14 +268,17 @@ static void log_softmax(int n_vocab, const float * logits, const uint16_t * base kld.sum_kld += sum; kld.sum_kld2 += sum*sum; ++kld.count; + if (imax == imax_base) ++kld.n_same_top; + return sum; } static void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token, - std::vector & workers, const std::vector & base_log_probs, kl_divergence_result & kld) { + std::vector & workers, const std::vector & base_log_probs, kl_divergence_result & kld, + float * kld_values) { std::mutex mutex; const int nv = 2*((n_vocab + 1)/2) + 4; int counter = 0; - auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv] () { + auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv, kld_values] () { kl_divergence_result local_kld; while (true) { std::unique_lock lock(mutex); @@ -276,11 +290,13 @@ static void process_logits(int n_vocab, const float * logits, const int * tokens kld.sum_kld2 += local_kld.sum_kld2; kld.sum_nll_diff += local_kld.sum_nll_diff; kld.sum_nll_diff2 += local_kld.sum_nll_diff2; + kld.n_same_top += local_kld.n_same_top; kld.count += local_kld.count; break; } lock.unlock(); - log_softmax(n_vocab, logits + i*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld); + double v = log_softmax(n_vocab, logits + i*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld); + kld_values[i] = (float)v; } }; for (auto & w : workers) { @@ -1615,7 +1631,7 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) { in.read((char *)&n_vocab, sizeof(n_vocab)); in.read((char *)&n_chunk, sizeof(n_chunk)); if (in.fail()) { - fprintf(stderr, "%s: failed rwading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str()); + fprintf(stderr, "%s: failed reading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str()); return; } if (n_vocab != llama_n_vocab(llama_get_model(ctx))) { @@ -1634,6 +1650,7 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) { const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); std::vector log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv); + std::vector kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk); std::vector logits; if (num_batches > 1) { logits.reserve(n_ctx * n_vocab); @@ -1652,6 +1669,7 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) { }; kl_divergence_result kld; + auto kld_ptr = kld_values.data(); for (int i = 0; i < n_chunk; ++i) { const int start = i * n_ctx; @@ -1705,20 +1723,24 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) { } fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0); - printf("\nchunk PPL ln(PPL(Q)/PPL(base)) KL-Divergence\n"); + printf("\nchunk PPL ln(PPL(Q)/PPL(base)) KL-Divergence Same top\n"); } const int first = n_ctx/2; const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx); process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, - workers, log_probs_uint16, kld); + workers, log_probs_uint16, kld, kld_ptr); + kld_ptr += n_ctx - 1 - first; auto ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count); auto log_ppl_ratio = mean_and_uncertainty(kld.sum_nll_diff, kld.sum_nll_diff2, kld.count); auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count); + auto p_top = 1.*kld.n_same_top/kld.count; + auto d_p_top = sqrt(p_top*(1 - p_top)/(kld.count - 1)); - printf("%4d %10.4lf %10.5lf ± %10.5f %10.5f ± %10.5lf\n", i+1, exp(ppl.first), - log_ppl_ratio.first, log_ppl_ratio.second, kl_div.first, kl_div.second); + printf("%4d %10.4lf %10.5lf ± %10.5f %10.5f ± %10.5lf %.5f ± %.5f\n", i+1, exp(ppl.first), + log_ppl_ratio.first, log_ppl_ratio.second, kl_div.first, kl_div.second, + p_top, d_p_top); fflush(stdout); @@ -1726,6 +1748,35 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) { } printf("\n"); + if (kld.count < 100) return; // we do not wish to do statistics on so few values + + std::sort(kld_values.begin(), kld_values.end()); + + printf("===== KL-divergence statistics\n"); + auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count); + printf("Average: %10.6f ±%10.6lf\n", kl_div.first, kl_div.second); + auto kld_median = kld_values.size()%2 == 0 ? 0.5f*(kld_values[kld_values.size()/2] + kld_values[kld_values.size()/2-1]) + : kld_values[kld_values.size()/2]; + printf("Median : %10.6f\n", kld_median); + + auto percentile = [&kld_values] (float fraction) { + if (fraction <= 0) return kld_values.front(); + if (fraction >= 1) return kld_values.back(); + float p = fraction*(kld_values.size() - 1); + size_t ip = size_t(p); p -= ip; + return (1 - p)*kld_values[ip] + p*kld_values[std::min(ip+1, kld_values.size()-1)]; + }; + + printf("Maximum: %10.6f\n", kld_values.back()); + printf("KLD_99 : %10.6f\n", percentile(0.99f)); + printf("KLD_95 : %10.6f\n", percentile(0.95f)); + printf("KLD_90 : %10.6f\n", percentile(0.90f)); + + printf("Minimum: %10.6f\n", kld_values.front()); + printf("KLD_01 : %10.6f\n", percentile(0.01f)); + printf("KLD_05 : %10.6f\n", percentile(0.05f)); + printf("KLD_10 : %10.6f\n", percentile(0.10f)); + } int main(int argc, char ** argv) {