forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperplexity.cpp
2032 lines (1696 loc) · 77.1 KB
/
perplexity.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "arg.h"
#include "common.h"
#include "log.h"
#include "llama.h"
#include <algorithm>
#include <array>
#include <atomic>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <mutex>
#include <random>
#include <sstream>
#include <thread>
#include <vector>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
struct results_perplexity {
std::vector<llama_token> tokens;
double ppl_value;
std::vector<float> logits;
std::vector<float> probs;
};
struct results_log_softmax {
double log_softmax;
float logit;
float prob;
};
static std::vector<float> softmax(const std::vector<float>& logits) {
std::vector<float> probs(logits.size());
float max_logit = logits[0];
for (float v : logits) {
max_logit = std::max(max_logit, v);
}
double sum_exp = 0.0;
for (size_t i = 0; i < logits.size(); i++) {
// Subtract the maximum logit value from the current logit value for numerical stability
const float logit = logits[i] - max_logit;
const float exp_logit = expf(logit);
sum_exp += exp_logit;
probs[i] = exp_logit;
}
for (size_t i = 0; i < probs.size(); i++) {
probs[i] /= sum_exp;
}
return probs;
}
static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
float max_logit = logits[0];
for (int i = 1; i < n_vocab; ++i) {
max_logit = std::max(max_logit, logits[i]);
}
double sum_exp = 0.0;
for (int i = 0; i < n_vocab; ++i) {
sum_exp += expf(logits[i] - max_logit);
}
return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
}
static inline int nearest_int(float fval) {
//assert(fval <= 4194303.f);
float val = fval + 12582912.f;
int i; memcpy(&i, &val, sizeof(int));
return (i & 0x007fffff) - 0x00400000;
}
static double log_softmax(int n_vocab, const float * logits, uint16_t * log_prob, int tok) {
float max_logit = logits[0];
float min_logit = logits[0];
for (int i = 1; i < n_vocab; ++i) {
max_logit = std::max(max_logit, logits[i]);
min_logit = std::min(min_logit, logits[i]);
}
min_logit = std::max(min_logit, max_logit - 16);
double sum_exp = 0.0;
for (int i = 0; i < n_vocab; ++i) {
sum_exp += expf(logits[i] - max_logit);
}
const float log_sum_exp = log(sum_exp);
const float min_log_prob = min_logit - max_logit - log_sum_exp;
const float scale = (max_logit - min_logit)/65535.f;
float * d = (float *)log_prob;
d[0] = scale;
d[1] = min_log_prob;
log_prob += 4;
if (scale) {
const float inv_scale = 1/scale;
for (int i = 0; i < n_vocab; ++i) {
log_prob[i] = logits[i] > min_logit ? nearest_int(inv_scale*(logits[i] - min_logit)) : 0;
}
} else {
std::memset(log_prob, 0, n_vocab*sizeof(uint16_t));
}
return max_logit + log_sum_exp - logits[tok];
}
static void process_logits(
int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
double & nll, double & nll2, float * logit_history, float * prob_history
) {
std::mutex mutex;
int counter = 0;
auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
double local_nll = 0;
double local_nll2 = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
int i = counter++;
if (i >= n_token) {
nll += local_nll; nll2 += local_nll2;
break;
}
lock.unlock();
const results_log_softmax results = log_softmax(n_vocab, logits + size_t(i)*n_vocab, tokens[i+1]);
const double v = -results.log_softmax;
local_nll += v;
local_nll2 += v*v;
logit_history[i] = results.logit;
prob_history[i] = results.prob;
}
};
for (auto & w : workers) {
w = std::thread(compute);
}
compute();
for (auto & w : workers) {
w.join();
}
}
static void process_logits(std::ostream& out, int n_vocab, const float * logits, const int * tokens, int n_token,
std::vector<std::thread> & workers, std::vector<uint16_t> & log_probs, double & nll, double & nll2) {
std::mutex mutex;
const int nv = 2*((n_vocab + 1)/2) + 4;
int counter = 0;
auto compute = [&mutex, &counter, &log_probs, &nll, &nll2, n_vocab, logits, tokens, n_token, nv] () {
double local_nll = 0;
double local_nll2 = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
int i = counter++;
if (i >= n_token) {
nll += local_nll; nll2 += local_nll2;
break;
}
lock.unlock();
const double v = log_softmax(n_vocab, logits + size_t(i)*n_vocab, log_probs.data() + i*nv, tokens[i+1]);
local_nll += v;
local_nll2 += v*v;
}
};
for (auto & w : workers) {
w = std::thread(compute);
}
compute();
for (auto & w : workers) {
w.join();
}
out.write((const char *)log_probs.data(), n_token*nv*sizeof(uint16_t));
}
struct kl_divergence_result {
double sum_nll = 0.0;
double sum_nll2 = 0.0;
double sum_nll_base = 0.0;
double sum_nll_base2 = 0.0;
double sum_nll_nll_base = 0.0;
double sum_kld = 0.0;
double sum_kld2 = 0.0;
double sum_p_diff = 0.0;
double sum_p_diff2 = 0.0;
double sum_p_diff4 = 0.0;
float max_p_diff = 0.0f;
size_t n_same_top = 0.0;
size_t count = 0.0;
};
static std::pair<double, float> log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) {
float max_logit = logits[0];
int imax = 0;
for (int i = 1; i < n_vocab; ++i) {
if (logits[i] > max_logit) {
max_logit = logits[i];
imax = i;
}
}
double sum_exp = 0.0;
for (int i = 0; i < n_vocab; ++i) {
sum_exp += expf(logits[i] - max_logit);
}
const float log_sum_exp = log(sum_exp);
const float * d = (const float *)base_log_prob;
const float scale = d[0];
const float min_log_prob = d[1];
base_log_prob += 4;
const float nll = max_logit + log_sum_exp - logits[tok];
kld.sum_nll += nll;
kld.sum_nll2 += nll*nll;
const float nll_base = -(scale*base_log_prob[tok] + min_log_prob);
kld.sum_nll_base += nll_base;
kld.sum_nll_base2 += nll_base*nll_base;
kld.sum_nll_nll_base += nll*nll_base;
max_logit += log_sum_exp;
double sum = 0;
int imax_base = -1;
float p_log_base_max = 0;
for (int i = 0; i < n_vocab; ++i) {
const float p_log_base = scale*base_log_prob[i] + min_log_prob;
if (i == 0 || p_log_base > p_log_base_max) {
p_log_base_max = p_log_base;
imax_base = i;
}
if (p_log_base > -16.f) {
const float p_base = expf(p_log_base);
sum += p_base * (p_log_base - logits[i] + max_logit);
}
}
kld.sum_kld += sum;
kld.sum_kld2 += sum*sum;
++kld.count;
if (imax == imax_base) {
++kld.n_same_top;
}
const float p_base = expf(-nll_base);
const float p = expf(-nll);
const float p_diff = p - p_base;
kld.sum_p_diff += p_diff;
const double p_diff2 = p_diff*p_diff;
kld.sum_p_diff2 += p_diff2;
kld.sum_p_diff4 += p_diff2*p_diff2;
kld.max_p_diff = std::max(kld.max_p_diff, std::fabs(p_diff));
return std::make_pair(sum, p_diff);
}
static void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token,
std::vector<std::thread> & workers, const std::vector<uint16_t> & base_log_probs, kl_divergence_result & kld,
float * kld_values, float * p_diff_values) {
std::mutex mutex;
const int nv = 2*((n_vocab + 1)/2) + 4;
int counter = 0;
auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv, kld_values, p_diff_values] () {
kl_divergence_result local_kld;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
int i = counter++;
if (i >= n_token) {
kld.sum_nll += local_kld.sum_nll;
kld.sum_nll2 += local_kld.sum_nll2;
kld.sum_nll_base += local_kld.sum_nll_base;
kld.sum_nll_base2 += local_kld.sum_nll_base2;
kld.sum_nll_nll_base += local_kld.sum_nll_nll_base;
kld.sum_kld += local_kld.sum_kld;
kld.sum_kld2 += local_kld.sum_kld2;
kld.sum_p_diff += local_kld.sum_p_diff;
kld.sum_p_diff2 += local_kld.sum_p_diff2;
kld.sum_p_diff4 += local_kld.sum_p_diff4;
kld.n_same_top += local_kld.n_same_top;
kld.max_p_diff = std::max(kld.max_p_diff, local_kld.max_p_diff);
kld.count += local_kld.count;
break;
}
lock.unlock();
std::pair<double, float> v = log_softmax(n_vocab, logits + size_t(i)*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld);
kld_values[i] = (float)v.first;
p_diff_values[i] = v.second;
}
};
for (auto & w : workers) {
w = std::thread(compute);
}
compute();
for (auto & w : workers) {
w.join();
}
}
static results_perplexity perplexity_v2(llama_context * ctx, const common_params & params) {
// Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
// Output: `perplexity: 13.5106 [114/114]`
// BOS tokens will be added for each chunk before eval
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
LOG_INF("%s: tokenizing the input ..\n", __func__);
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
const int n_ctx = llama_n_ctx(ctx);
if (int(tokens.size()) < 2*n_ctx) {
LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
n_ctx);
LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
return {std::move(tokens), 0., {}, {}};
}
std::vector<float> logit_history;
std::vector<float> prob_history;
logit_history.resize(tokens.size());
prob_history.resize(tokens.size());
if (params.ppl_stride <= 0) {
LOG_ERR("%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
return {tokens, -1, logit_history, prob_history};
}
const int calc_chunk = n_ctx;
LOG_INF("%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
if (int(tokens.size()) <= calc_chunk) {
LOG_ERR("%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
tokens.size(), n_ctx, params.ppl_stride);
return {tokens, -1, logit_history, prob_history};
}
const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
const int n_batch = params.n_batch;
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
int count = 0;
double nll = 0.0;
LOG_INF("%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
for (int i = 0; i < n_chunk; ++i) {
const int start = i * params.ppl_stride;
const int end = start + calc_chunk;
const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
//LOG_DBG("%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
std::vector<float> logits;
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_clear(ctx);
llama_batch batch = llama_batch_init(n_batch, 0, 1);
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
const int batch_size = std::min(end - batch_start, n_batch);
common_batch_clear(batch);
for (int i = 0; i < batch_size; i++) {
common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
}
//LOG_DBG(" Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
if (llama_decode(ctx, batch)) {
//LOG_ERR("%s : failed to eval\n", __func__);
llama_batch_free(batch);
return {tokens, -1, logit_history, prob_history};
}
// save original token and restore it after eval
const auto token_org = tokens[batch_start];
// add BOS token for the first batch of each chunk
if (add_bos && j == 0) {
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
}
const auto * batch_logits = llama_get_logits(ctx);
logits.insert(logits.end(), batch_logits, batch_logits + size_t(batch_size) * n_vocab);
if (j == 0) {
tokens[batch_start] = token_org;
}
}
llama_batch_free(batch);
const auto t_end = std::chrono::high_resolution_clock::now();
if (i == 0) {
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
int total_seconds = (int)(t_total * n_chunk);
if (total_seconds >= 60*60) {
LOG("%d hours ", total_seconds / (60*60));
total_seconds = total_seconds % (60*60);
}
LOG("%.2f minutes\n", total_seconds / 60.0);
}
//LOG_DBG("%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) {
// Calculate probability of next token, given the previous ones.
const std::vector<float> tok_logits(
logits.begin() + size_t(j + 0) * n_vocab,
logits.begin() + size_t(j + 1) * n_vocab);
const float prob = softmax(tok_logits)[tokens[start + j + 1]];
logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]];
prob_history[start + j + 1] = prob;
nll += -std::log(prob);
++count;
}
// perplexity is e^(average negative log-likelihood)
if (params.ppl_output_type == 0) {
LOG("[%d]%.4lf,", i + 1, std::exp(nll / count));
} else {
LOG("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
}
}
LOG("\n");
return {tokens, std::exp(nll / count), logit_history, prob_history};
}
static results_perplexity perplexity(llama_context * ctx, const common_params & params, const int32_t n_ctx) {
if (params.ppl_stride > 0) {
return perplexity_v2(ctx, params);
}
// Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
// Run `./llama-perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
// Output: `perplexity: 13.5106 [114/114]`
// BOS tokens will be added for each chunk before eval
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
std::ofstream logits_stream;
if (!params.logits_file.empty()) {
logits_stream.open(params.logits_file.c_str(), std::ios::binary);
if (!logits_stream.is_open()) {
LOG_ERR("%s: failed to open %s for writing\n", __func__, params.logits_file.c_str());
return {};
}
LOG_INF("%s: saving all logits to %s\n", __func__, params.logits_file.c_str());
logits_stream.write("_logits_", 8);
logits_stream.write(reinterpret_cast<const char *>(&n_ctx), sizeof(n_ctx));
}
auto tim1 = std::chrono::high_resolution_clock::now();
LOG_INF("%s: tokenizing the input ..\n", __func__);
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
auto tim2 = std::chrono::high_resolution_clock::now();
LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
if (int(tokens.size()) < 2*n_ctx) {
LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
n_ctx);
LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
return {std::move(tokens), 0., {}, {}};
}
std::vector<float> logit_history;
logit_history.resize(tokens.size());
std::vector<float> prob_history;
prob_history.resize(tokens.size());
const int n_chunk_max = tokens.size() / n_ctx;
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
const int n_batch = params.n_batch;
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
int count = 0;
double nll = 0.0;
double nll2 = 0.0;
const int num_batches = (n_ctx + n_batch - 1) / n_batch;
const int n_seq = std::max(1, n_batch / n_ctx);
GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0);
GGML_ASSERT(params.n_ctx == n_seq * n_ctx);
llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1);
std::vector<float> logits;
if (num_batches > 1) {
logits.reserve(size_t(n_ctx) * n_vocab);
}
LOG_INF("%s: calculating perplexity over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
std::vector<uint16_t> log_probs;
if (!params.logits_file.empty()) {
logits_stream.write((const char *)&n_vocab, sizeof(n_vocab));
logits_stream.write((const char *)&n_chunk, sizeof(n_chunk));
logits_stream.write((const char *)tokens.data(), n_chunk*n_ctx*sizeof(tokens[0]));
const int nv = 2*((n_vocab + 1)/2) + 4;
log_probs.resize(n_ctx * nv);
}
// We get the logits for all the tokens in the context window (params.n_ctx)
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
// calculate the perplexity over the last half of the window (so the model always has
// some context to predict the token).
//
// We rely on the fact that attention in the forward pass only looks at previous
// tokens here, so the logits returned for each token are an accurate representation
// of what the model would have predicted at that point.
//
// Example, we have a context window of 512, we will compute perplexity for each of the
// last 256 tokens. Then, we split the input up into context window size chunks to
// process the entire prompt.
const int first = n_ctx/2;
for (int i = 0; i < n_chunk; i += n_seq) {
const int start = i * n_ctx;
const int end = start + n_ctx;
const int n_seq_batch = std::min(n_seq, n_chunk - i);
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_clear(ctx);
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
const int batch_size = std::min(end - batch_start, n_batch);
int n_outputs = 0;
batch.n_tokens = 0;
for (int seq = 0; seq < n_seq_batch; seq++) {
int seq_start = batch_start + seq*n_ctx;
// save original token and restore it after eval
const auto token_org = tokens[seq_start];
// add BOS token for the first batch of each chunk
if (add_bos && j == 0) {
tokens[seq_start] = llama_token_bos(llama_get_model(ctx));
}
for (int k = 0; k < batch_size; ++k) {
const int idx = seq*n_ctx + k;
batch.token [idx] = tokens[seq_start + k];
batch.pos [idx] = j*n_batch + k;
batch.n_seq_id[idx] = 1;
batch.seq_id [idx][0] = seq;
batch.logits [idx] = batch.pos[idx] >= first ? 1 : 0;
n_outputs += batch.logits[idx] != 0;
}
batch.n_tokens += batch_size;
// restore the original token in case it was set to BOS
tokens[seq_start] = token_org;
}
if (llama_decode(ctx, batch)) {
LOG_INF("%s : failed to eval\n", __func__);
return {tokens, -1, logit_history, prob_history};
}
if (num_batches > 1 && n_outputs > 0) {
const auto * batch_logits = llama_get_logits(ctx);
logits.insert(logits.end(), batch_logits, batch_logits + size_t(n_outputs) * n_vocab);
}
}
if (i == 0) {
llama_synchronize(ctx);
const auto t_end = std::chrono::high_resolution_clock::now();
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
int total_seconds = (int)(t_total*n_chunk/n_seq);
if (total_seconds >= 60*60) {
LOG("%d hours ", total_seconds / (60*60));
total_seconds = total_seconds % (60*60);
}
LOG("%.2f minutes\n", total_seconds / 60.0);
}
for (int seq = 0; seq < n_seq_batch; seq++) {
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx + first);
llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first;
if (!params.logits_file.empty()) {
process_logits(logits_stream, n_vocab, all_logits,
tokens_data, n_ctx - 1 - first,
workers, log_probs, nll, nll2);
} else {
process_logits(n_vocab, all_logits,
tokens_data, n_ctx - 1 - first,
workers, nll, nll2,
logit_history.data() + start + seq*n_ctx + first,
prob_history.data() + start + seq*n_ctx + first);
}
count += n_ctx - first - 1;
// perplexity is e^(average negative log-likelihood)
if (params.ppl_output_type == 0) {
LOG("[%d]%.4lf,", i + seq + 1, std::exp(nll / count));
} else {
double av = nll/count;
double av2 = nll2/count - av*av;
if (av2 > 0) {
av2 = sqrt(av2/(count-1));
}
LOG("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
}
}
logits.clear();
}
LOG("\n");
nll2 /= count;
nll /= count;
const double ppl = exp(nll);
nll2 -= nll * nll;
if (nll2 > 0) {
nll2 = sqrt(nll2/(count-1));
LOG_INF("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
} else {
LOG_ERR("Unexpected negative standard deviation of log(prob)\n");
}
llama_batch_free(batch);
return {tokens, ppl, logit_history, prob_history};
}
static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int n_batch, int n_vocab) {
int prev_outputs = 0;
for (int i = 0; i < (int) batch.n_tokens; i += n_batch) {
const int n_tokens = std::min<int>(n_batch, batch.n_tokens - i);
llama_batch batch_view = {
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
};
const int ret = llama_decode(ctx, batch_view);
if (ret != 0) {
LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
return false;
}
int n_outputs = 0;
for (int i = 0; i < n_tokens; ++i) {
n_outputs += batch_view.logits[i] != 0;
}
memcpy(batch_logits.data() + size_t(prev_outputs)*n_vocab, llama_get_logits(ctx), size_t(n_outputs)*n_vocab*sizeof(float));
prev_outputs += n_outputs;
}
return true;
}
#define K_TOKEN_CHUNK 4
static void compute_logprobs(const float * batch_logits, int n_vocab, std::vector<std::thread>& workers,
const std::vector<std::pair<size_t, llama_token>>& eval_pairs, std::vector<float>& eval_results) {
if (eval_results.size() != eval_pairs.size()) {
eval_results.resize(eval_pairs.size());
}
if (eval_pairs.empty()) {
return;
}
size_t max_threads = std::min((eval_pairs.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK, workers.size());
std::atomic<int> counter(0);
auto compute = [&counter, &eval_pairs, &eval_results, batch_logits, n_vocab] () {
float local_logprobs[K_TOKEN_CHUNK];
while (true) {
const size_t first = counter.fetch_add(K_TOKEN_CHUNK, std::memory_order_relaxed);
if (first >= eval_results.size()) {
break;
}
const size_t last = std::min(first + K_TOKEN_CHUNK, eval_results.size());
for (size_t i = first; i < last; ++i) {
const auto * logits = batch_logits + eval_pairs[i].first * n_vocab;
float max_logit = logits[0];
for (int j = 1; j < n_vocab; ++j) {
max_logit = std::max(max_logit, logits[j]);
}
float sum_p = 0.f;
for (int j = 0; j < n_vocab; ++j) {
sum_p += expf(logits[j] - max_logit);
}
local_logprobs[i - first] = logits[eval_pairs[i].second] - max_logit - std::log(sum_p);
}
std::memcpy(eval_results.data() + first, local_logprobs, (last - first)*sizeof(float));
}
};
for (size_t it = 0; it < max_threads; ++it) {
workers[it] = std::thread(compute);
}
for (size_t it = 0; it < max_threads; ++it) {
workers[it].join();
}
}
static void hellaswag_score(llama_context * ctx, const common_params & params) {
// Calculates hellaswag score (acc_norm) from prompt
//
// Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
// All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
//
// All 10042 tasks should be extracted to keep the results standardized like other implementations.
//
// Datafile layout:
// ['??'] denotes json fields
// 6 lines per task:
// ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
// ['label'] - The index the best common sense ending aka gold ending
// ['endings'][0] - Endings added to the first part of the query
// ['endings'][1]
// ['endings'][2]
// ['endings'][3]
std::vector<std::string> prompt_lines;
std::istringstream strstream(params.prompt);
std::string line;
while (std::getline(strstream,line,'\n')) {
prompt_lines.push_back(line);
}
if (prompt_lines.size() % 6 != 0) {
LOG_ERR("%s : number of lines in prompt not a multiple of 6.\n", __func__);
return;
}
size_t hs_task_count = prompt_lines.size()/6;
LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
LOG_INF("================================= is_spm = %d\n", is_spm);
// The tasks should be randomized so the score stabilizes quickly.
bool randomize_tasks = true;
// Number of tasks to use when computing the score
if (params.hellaswag_tasks < hs_task_count) {
hs_task_count = params.hellaswag_tasks;
}
// The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
std::mt19937 rng(1);
// Dataholder for hellaswag tasks
struct hs_data_t {
std::string context;
size_t gold_ending_idx;
std::string ending[4];
size_t ending_logprob_count[4];
double ending_logprob[4];
size_t i_logits; // starting index of logits in the llama_batch
size_t common_prefix; // max number of initial tokens that are the same in all sentences
size_t required_tokens; // needed number of tokens to evaluate all 4 endings
std::vector<llama_token> seq_tokens[4];
};
LOG_INF("%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
// Select and read data from prompt lines
std::vector<hs_data_t> hs_data(hs_task_count);
for (size_t i = 0; i < hs_task_count; i++) {
size_t idx = i;
auto & hs_cur = hs_data[i];
// Select a random example of those left in the prompt
if (randomize_tasks) {
std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
idx = dist(rng);
}
hs_cur.context = prompt_lines[idx*6];
hs_cur.gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
for (size_t j = 0; j < 4; j++) {
hs_cur.ending[j] = prompt_lines[idx*6+2+j];
hs_cur.seq_tokens[j] = common_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], true);
}
// determine the common prefix of the endings
hs_cur.common_prefix = 0;
for (size_t k = 0; k < hs_cur.seq_tokens[0].size(); k++) {
if (hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[1][k] ||
hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[2][k] ||
hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[3][k]) {
break;
}
hs_cur.common_prefix++;
}
hs_cur.required_tokens = hs_cur.common_prefix +
hs_cur.seq_tokens[0].size() - hs_cur.common_prefix +
hs_cur.seq_tokens[1].size() - hs_cur.common_prefix +
hs_cur.seq_tokens[2].size() - hs_cur.common_prefix +
hs_cur.seq_tokens[3].size() - hs_cur.common_prefix;
//GGML_ASSERT(hs_cur.common_prefix >= ::llama_tokenize(ctx, hs_cur.context, true).size());
// Delete the selected random example from the prompt
if (randomize_tasks) {
prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
}
}
LOG_INF("%s : calculating hellaswag score over selected tasks.\n", __func__);
LOG("\ntask\tacc_norm\n");
double acc = 0.0f;
const int n_ctx = llama_n_ctx(ctx);
const int n_batch = params.n_batch;
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const int max_tasks_per_batch = 32;
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
llama_batch batch = llama_batch_init(n_ctx, 0, 4);
std::vector<float> tok_logits(n_vocab);
// TODO: this could be made smaller; it's currently the worst-case size
std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
std::vector<std::pair<size_t, llama_token>> eval_pairs;
std::vector<float> eval_results;
std::vector<std::thread> workers(std::thread::hardware_concurrency());
for (size_t i0 = 0; i0 < hs_task_count; i0++) {
int n_cur = 0;
size_t i1 = i0;
size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
common_batch_clear(batch);
// batch as much tasks as possible into the available context
// each task has 4 unique sequence ids - one for each ending
// the common prefix is shared among the 4 sequences to save tokens
// we extract logits only from the last common token and from all ending tokens of each sequence
while (n_cur + (int) hs_data[i1].required_tokens <= n_ctx) {
auto & hs_cur = hs_data[i1];
int n_logits = 0;
const int s0 = 4*(i1 - i0);
if (s0 + 4 > max_seq) {
break;
}
for (size_t i = 0; i < hs_cur.common_prefix; ++i) {
common_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3 }, false);
}
batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
n_logits += 1;
for (int s = 0; s < 4; ++s) {
const size_t seq_tokens_size = hs_cur.seq_tokens[s].size();
// TODO: don't evaluate the last token of each sequence
for (size_t i = hs_cur.common_prefix; i < seq_tokens_size; ++i) {
const bool needs_logits = i < seq_tokens_size - 1;
common_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, needs_logits);
n_logits += needs_logits;
}
}
hs_cur.i_logits = i_logits;
i_logits += n_logits;
n_cur += hs_data[i1].required_tokens;
if (++i1 == hs_task_count) {
break;
}
}
if (i0 == i1) {
LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
return;
}
llama_kv_cache_clear(ctx);
// decode all tasks [i0, i1)
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
LOG_ERR("%s: llama_decode() failed\n", __func__);
return;
}
// Compute log-probs in parallel
// First we collect all tasks
eval_pairs.clear();
for (size_t i = i0; i < i1; ++i) {
auto & hs_cur = hs_data[i];
size_t li = 1; // skip the last logit of the common prefix (computed separately below)
for (int s = 0; s < 4; ++s) {
for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
eval_pairs.emplace_back(hs_cur.i_logits + li++, hs_cur.seq_tokens[s][j + 1]);
}
}
}
// Then we do the actual calculation
compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
size_t ir = 0;
// compute the logprobs for each ending of the decoded tasks
for (size_t i = i0; i < i1; ++i) {
auto & hs_cur = hs_data[i];
// get the logits of the last token of the common prefix
std::memcpy(tok_logits.data(), batch_logits.data() + hs_cur.i_logits*n_vocab, n_vocab*sizeof(float));
const auto first_probs = softmax(tok_logits);
for (int s = 0; s < 4; ++s) {
hs_cur.ending_logprob_count[s] = 1;
hs_cur.ending_logprob[s] = std::log(first_probs[hs_cur.seq_tokens[s][hs_cur.common_prefix]]);
for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
hs_cur.ending_logprob[s] += eval_results[ir++];
hs_cur.ending_logprob_count[s]++;
}
hs_cur.ending_logprob[s] /= hs_cur.ending_logprob_count[s];
}
// Find the ending with maximum logprob
size_t ending_logprob_max_idx = 0;
double ending_logprob_max_val = hs_cur.ending_logprob[0];
for (size_t s = 1; s < 4; s++) {
if (hs_cur.ending_logprob[s] > ending_logprob_max_val) {
ending_logprob_max_idx = s;
ending_logprob_max_val = hs_cur.ending_logprob[s];
}
}
//LOG("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_cur.gold_ending_idx);
// If the gold ending got the maximum logprobe add one accuracy point
if (ending_logprob_max_idx == hs_cur.gold_ending_idx) {
acc += 1.0;
}
// Print the accumulated accuracy mean x 100
LOG("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0);
}
i0 = i1 - 1;
}
llama_batch_free(batch);
LOG("\n");
}
struct winogrande_entry {
std::string first;
std::string second;
std::array<std::string, 2> choices;
int answer;
size_t i_logits;
size_t common_prefix;
size_t required_tokens;
size_t n_base1; // number of tokens for context + choice 1
size_t n_base2; // number of tokens for context + choice 2