-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathcheck_dataset.py
125 lines (96 loc) · 4.99 KB
/
check_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import torch
import torchvision.transforms as transforms
import torchvision.datasets as dset
import torch.utils.data as data
class FolderSubset(data.Dataset):
def __init__(self, dataset, classes, indices):
self.dataset = dataset
self.classes = classes
self.indices = indices
self.update_classes()
def update_classes(self):
for i in self.indices:
img_path, cls = self.dataset.samples[i]
cls = self.classes.index(cls)
self.dataset.samples[i] = (img_path, cls)
def __getitem__(self, idx):
return self.dataset[self.indices[idx]]
def __len__(self):
return len(self.indices)
class STL10Subset(data.Dataset):
def __init__(self, dataset, classes, indices):
self.dataset = dataset
self.classes = classes
self.indices = indices
def __getitem__(self, idx):
return self.dataset[self.indices[idx]]
def __len__(self):
return len(self.indices)
class CIFARSubset(data.Dataset):
def __init__(self, dataset, classes, indices):
self.dataset = dataset
self.classes = classes
self.indices = indices
# self.update_classes()
# def update_classes(self):
# for i in self.indices:
# if self.dataset.train:
# self.dataset.train_labels[i] = self.classes.index(self.dataset.train_labels[i])
# else:
# self.dataset.test_labels[i] = self.classes.index(self.dataset.test_labels[i])
def __getitem__(self, idx):
return self.dataset[self.indices[idx]]
def __len__(self):
return len(self.indices)
def check_split(opt):
splits = []
for split in ['train', 'val', 'test']:
splits.append(torch.load('split/' + opt.datasplit + '-' + split))
return splits
def check_dataset(opt):
normalize_transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
train_large_transform = transforms.Compose([transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip()])
val_large_transform = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224)])
train_small_transform = transforms.Compose([transforms.Pad(4),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip()])
splits = check_split(opt)
if opt.dataset in ['cub200', 'indoor', 'stanford40', 'dog']:
train, val = 'train', 'test'
train_transform = transforms.Compose([train_large_transform, normalize_transform])
val_transform = transforms.Compose([val_large_transform, normalize_transform])
sets = [dset.ImageFolder(root=os.path.join(opt.dataroot, train), transform=train_transform),
dset.ImageFolder(root=os.path.join(opt.dataroot, train), transform=val_transform),
dset.ImageFolder(root=os.path.join(opt.dataroot, val), transform=val_transform)]
sets = [FolderSubset(dataset, *split) for dataset, split in zip(sets, splits)]
opt.num_classes = len(splits[0][0])
elif opt.dataset == 'stl10':
train_transform = transforms.Compose([transforms.Resize(32),
train_small_transform, normalize_transform])
val_transform = transforms.Compose([transforms.Resize(32), normalize_transform])
sets = [dset.STL10(opt.dataroot, split='train', transform=train_transform, download=True),
dset.STL10(opt.dataroot, split='train', transform=val_transform, download=True),
dset.STL10(opt.dataroot, split='test', transform=val_transform, download=True)]
sets = [STL10Subset(dataset, *split) for dataset, split in zip(sets, splits)]
opt.num_classes = len(splits[0][0])
elif opt.dataset in ['cifar10', 'cifar100']:
train_transform = transforms.Compose([train_small_transform, normalize_transform])
val_transform = normalize_transform
CIFAR = dset.CIFAR10 if opt.dataset == 'cifar10' else dset.CIFAR100
sets = [CIFAR(opt.dataroot, download=True, train=True, transform=train_transform),
CIFAR(opt.dataroot, download=True, train=True, transform=val_transform),
CIFAR(opt.dataroot, download=True, train=False, transform=val_transform)]
sets = [CIFARSubset(dataset, *split) for dataset, split in zip(sets, splits)]
opt.num_classes = len(splits[0][0])
else:
raise Exception('Unknown dataset')
loaders = [torch.utils.data.DataLoader(dataset,
batch_size=opt.batchSize,
shuffle=True,
num_workers=0) for dataset in sets]
return loaders