-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgibbs_sampling.py
135 lines (102 loc) · 4.18 KB
/
gibbs_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy.stats import gamma
from sklearn.preprocessing import MinMaxScaler
columns = ['user', 'item', 'score']
train_data = pd.read_csv('dataset/train_user_item_score.txt', header=None, names=columns).drop_duplicates(columns[0:1])
validation_data = pd.read_csv('dataset/validation_user_item_score.txt', header=None, names=columns).drop_duplicates(
columns[0:1])
users_items_train_matrix = train_data.pivot(index='user', columns='item', values='score')
n_users = users_items_train_matrix.shape[0]
n_items = users_items_train_matrix.shape[1]
R = users_items_train_matrix.fillna(0).values
n_epochs = 20
n_latent = 2
class GibbsSampler:
def __init__(self, sigma=1, alpha_U=1, beta_U=1, alpha_V=1, beta_V=1):
self.sigma = sigma
self.alpha_U = alpha_U
self.beta_U = beta_U
self.alpha_V = alpha_V
self.beta_V = beta_V
self.sigma_U: float = 1 / gamma.rvs(self.alpha_U, self.beta_U)
self.sigma_V: float = 1 / gamma.rvs(self.alpha_V, self.beta_V)
self.sigma_U = 1
self.sigma_V = 1
self.U = np.random.normal(0.0, self.sigma_U, (n_latent, n_users))
self.V = np.random.normal(0.0, self.sigma_V, (n_latent, n_items))
def _sample_U(self):
for i in range(n_users):
V_j = self.V[:, R[i, :] > 0]
cov_inv = (1 / self.sigma_U) * np.identity(n_latent) + (1 / self.sigma) + np.dot(V_j, V_j.T)
cov = np.linalg.inv(cov_inv)
mean = np.dot(cov, ((1 / self.sigma) * np.dot(R[i, R[i, :] > 0], V_j.T)))
self.U[:, i] = np.random.multivariate_normal(mean, cov, 1)
def _sample_V(self):
for j in range(n_items):
U_i = self.U[:, R[:, j] > 0]
cov_inv = (1 / self.sigma_V) * np.identity(n_latent) + (1 / self.sigma) + np.dot(U_i, U_i.T)
cov = np.linalg.inv(cov_inv)
mean = np.dot(cov, ((1 / self.sigma) * np.dot(R[R[:, j] > 0, j], U_i.T)))
self.V[:, j] = np.random.multivariate_normal(mean, cov, 1)
def _sample_sigma_U(self):
self.alpha_U += (n_users * n_latent) / 2
self.beta_U += 0.5 * np.sum(np.power(self.U, 2))
self.sigma_U = 1 / gamma.rvs(self.alpha_U, self.beta_U)
self.sigma_U = 1
def _sample_sigma_V(self):
self.alpha_V += (n_items * n_latent) / 2
self.beta_V += 0.5 * np.sum(np.power(self.V, 2))
self.sigma_V = 1 / gamma.rvs(self.alpha_V, self.beta_V)
self.sigma_V = 1
def sample(self):
self._sample_U()
self._sample_V()
self._sample_sigma_U()
self._sample_sigma_V()
Ut_V: np.ndarray = np.matmul(self.U.T, self.V)
r_hat = np.random.normal(Ut_V, self.sigma, size=Ut_V.shape)
return r_hat
def normalize(a):
return MinMaxScaler().fit_transform(a) * 5
def compute_training_loss(a, b):
training = a > 0
squared_error = np.power(np.where(training, a - b, 0), 2)
return squared_error[training].mean()
gibbs_sampler = GibbsSampler(sigma=np.var(R[R > 0]))
training_loss = []
Ut_V: np.ndarray = np.matmul(gibbs_sampler.U.T, gibbs_sampler.V)
r_hat = np.random.normal(Ut_V, gibbs_sampler.sigma, size=Ut_V.shape)
normalized_r_hat = normalize(r_hat)
loss = compute_training_loss(R, normalized_r_hat)
training_loss.append(loss)
print(-1, loss)
for k in range(n_epochs):
r_hat = gibbs_sampler.sample()
normalized_r_hat = normalize(r_hat)
loss = compute_training_loss(R, normalized_r_hat)
training_loss.append(loss)
print(k, loss)
print('#' * 20)
def mse(y_pred, y_true):
return np.power(np.subtract(y_true, y_pred), 2).mean()
def predict(user_id, item_id):
return normalized_r_hat[user_id, item_id]
ground_truths = []
predictions = []
false_data_count = 0
for _, row in validation_data.iterrows():
try:
predictions.append(predict(row.loc['user'], row.loc['item']))
ground_truths.append(row.loc['score'])
except IndexError as e:
false_data_count += 1
continue
print('mse: ', mse(ground_truths, predictions))
print('false data count: ', false_data_count)
plt.plot(training_loss)
plt.title('training loss')
plt.xlabel('iteration')
plt.ylabel('RMSE')
plt.show()