forked from trezor/trezor-crypto
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bignum.c
1102 lines (1010 loc) · 29.4 KB
/
bignum.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* Copyright (c) 2013-2014 Tomas Dzetkulic
* Copyright (c) 2013-2014 Pavol Rusnak
* Copyright (c) 2015 Jochen Hoenicke
* Copyright (c) 2016 Alex Beregszaszi
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "bignum.h"
#include "memzero.h"
/* big number library */
/* The structure bignum256 is an array of nine 32-bit values, which
* are digits in base 2^30 representation. I.e. the number
* bignum256 a;
* represents the value
* sum_{i=0}^8 a.val[i] * 2^{30 i}.
*
* The number is *normalized* iff every digit is < 2^30.
*
* As the name suggests, a bignum256 is intended to represent a 256
* bit number, but it can represent 270 bits. Numbers are usually
* reduced using a prime, either the group order or the field prime.
* The reduction is often partly done by bn_fast_mod, and similarly
* implicitly in bn_multiply. A *partly reduced number* is a
* normalized number between 0 (inclusive) and 2*prime (exclusive).
*
* A partly reduced number can be fully reduced by calling bn_mod.
* Only a fully reduced number is guaranteed to fit in 256 bit.
*
* All functions assume that the prime in question is slightly smaller
* than 2^256. In particular it must be between 2^256-2^224 and
* 2^256 and it must be a prime number.
*/
inline uint32_t read_be(const uint8_t *data)
{
return (((uint32_t)data[0]) << 24) |
(((uint32_t)data[1]) << 16) |
(((uint32_t)data[2]) << 8) |
(((uint32_t)data[3]));
}
inline void write_be(uint8_t *data, uint32_t x)
{
data[0] = x >> 24;
data[1] = x >> 16;
data[2] = x >> 8;
data[3] = x;
}
inline uint32_t read_le(const uint8_t *data)
{
return (((uint32_t)data[3]) << 24) |
(((uint32_t)data[2]) << 16) |
(((uint32_t)data[1]) << 8) |
(((uint32_t)data[0]));
}
inline void write_le(uint8_t *data, uint32_t x)
{
data[3] = x >> 24;
data[2] = x >> 16;
data[1] = x >> 8;
data[0] = x;
}
// convert a raw bigendian 256 bit value into a normalized bignum.
// out_number is partly reduced (since it fits in 256 bit).
void bn_read_be(const uint8_t *in_number, bignum256 *out_number)
{
int i;
uint32_t temp = 0;
for (i = 0; i < 8; i++) {
// invariant: temp = (in_number % 2^(32i)) >> 30i
// get next limb = (in_number % 2^(32(i+1))) >> 32i
uint32_t limb = read_be(in_number + (7 - i) * 4);
// temp = (in_number % 2^(32(i+1))) << 30i
temp |= limb << (2*i);
// store 30 bits into val[i]
out_number->val[i]= temp & 0x3FFFFFFF;
// prepare temp for next round
temp = limb >> (30 - 2*i);
}
out_number->val[8] = temp;
}
// convert a normalized bignum to a raw bigendian 256 bit number.
// in_number must be fully reduced.
void bn_write_be(const bignum256 *in_number, uint8_t *out_number)
{
int i;
uint32_t temp = in_number->val[8];
for (i = 0; i < 8; i++) {
// invariant: temp = (in_number >> 30*(8-i))
uint32_t limb = in_number->val[7 - i];
temp = (temp << (16 + 2*i)) | (limb >> (14 - 2*i));
write_be(out_number + i * 4, temp);
temp = limb;
}
}
// convert a raw little endian 256 bit value into a normalized bignum.
// out_number is partly reduced (since it fits in 256 bit).
void bn_read_le(const uint8_t *in_number, bignum256 *out_number)
{
int i;
uint32_t temp = 0;
for (i = 0; i < 8; i++) {
// invariant: temp = (in_number % 2^(32i)) >> 30i
// get next limb = (in_number % 2^(32(i+1))) >> 32i
uint32_t limb = read_le(in_number + i * 4);
// temp = (in_number % 2^(32(i+1))) << 30i
temp |= limb << (2*i);
// store 30 bits into val[i]
out_number->val[i]= temp & 0x3FFFFFFF;
// prepare temp for next round
temp = limb >> (30 - 2*i);
}
out_number->val[8] = temp;
}
// convert a normalized bignum to a raw little endian 256 bit number.
// in_number must be fully reduced.
void bn_write_le(const bignum256 *in_number, uint8_t *out_number)
{
int i;
uint32_t temp = in_number->val[8];
for (i = 0; i < 8; i++) {
// invariant: temp = (in_number >> 30*(8-i))
uint32_t limb = in_number->val[7 - i];
temp = (temp << (16 + 2*i)) | (limb >> (14 - 2*i));
write_le(out_number + (7 - i) * 4, temp);
temp = limb;
}
}
void bn_read_uint32(uint32_t in_number, bignum256 *out_number)
{
out_number->val[0] = in_number & 0x3FFFFFFF;
out_number->val[1] = in_number >> 30;
out_number->val[2] = 0;
out_number->val[3] = 0;
out_number->val[4] = 0;
out_number->val[5] = 0;
out_number->val[6] = 0;
out_number->val[7] = 0;
out_number->val[8] = 0;
}
void bn_read_uint64(uint64_t in_number, bignum256 *out_number)
{
out_number->val[0] = in_number & 0x3FFFFFFF;
out_number->val[1] = (in_number >>= 30) & 0x3FFFFFFF;
out_number->val[2] = in_number >>= 30;
out_number->val[3] = 0;
out_number->val[4] = 0;
out_number->val[5] = 0;
out_number->val[6] = 0;
out_number->val[7] = 0;
out_number->val[8] = 0;
}
// a must be normalized
int bn_bitcount(const bignum256 *a)
{
int i;
for (i = 8; i >= 0; i--) {
int tmp = a->val[i];
if (tmp != 0) {
return i * 30 + (32 - __builtin_clz(tmp));
}
}
return 0;
}
#define DIGITS 78 // log10(2 ^ 256)
unsigned int bn_digitcount(const bignum256 *a)
{
bignum256 val;
memcpy(&val, a, sizeof(bignum256));
unsigned int digits = 1;
for (unsigned int i = 0; i < DIGITS; i += 3) {
uint32_t limb;
bn_divmod1000(&val, &limb);
if (limb >= 100) {
digits = i + 3;
} else if (limb >= 10) {
digits = i + 2;
} else if (limb >= 1) {
digits = i + 1;
}
}
return digits;
}
// sets a bignum to zero.
void bn_zero(bignum256 *a)
{
int i;
for (i = 0; i < 9; i++) {
a->val[i] = 0;
}
}
// sets a bignum to one.
void bn_one(bignum256 *a)
{
a->val[0] = 1;
a->val[1] = 0;
a->val[2] = 0;
a->val[3] = 0;
a->val[4] = 0;
a->val[5] = 0;
a->val[6] = 0;
a->val[7] = 0;
a->val[8] = 0;
}
// checks that a bignum is zero.
// a must be normalized
// function is constant time (on some architectures, in particular ARM).
int bn_is_zero(const bignum256 *a)
{
int i;
uint32_t result = 0;
for (i = 0; i < 9; i++) {
result |= a->val[i];
}
return !result;
}
// Check whether a < b
// a and b must be normalized
// function is constant time (on some architectures, in particular ARM).
int bn_is_less(const bignum256 *a, const bignum256 *b)
{
int i;
uint32_t res1 = 0;
uint32_t res2 = 0;
for (i = 8; i >= 0; i--) {
res1 = (res1 << 1) | (a->val[i] < b->val[i]);
res2 = (res2 << 1) | (a->val[i] > b->val[i]);
}
return res1 > res2;
}
// Check whether a == b
// a and b must be normalized
// function is constant time (on some architectures, in particular ARM).
int bn_is_equal(const bignum256 *a, const bignum256 *b) {
int i;
uint32_t result = 0;
for (i = 0; i < 9; i++) {
result |= (a->val[i] ^ b->val[i]);
}
return !result;
}
// Assigns res = cond ? truecase : falsecase
// assumes that cond is either 0 or 1.
// function is constant time.
void bn_cmov(bignum256 *res, int cond, const bignum256 *truecase, const bignum256 *falsecase)
{
int i;
uint32_t tmask = (uint32_t) -cond;
uint32_t fmask = ~tmask;
assert (cond == 1 || cond == 0);
for (i = 0; i < 9; i++) {
res->val[i] = (truecase->val[i] & tmask) |
(falsecase->val[i] & fmask);
}
}
// shift number to the left, i.e multiply it by 2.
// a must be normalized. The result is normalized but not reduced.
void bn_lshift(bignum256 *a)
{
int i;
for (i = 8; i > 0; i--) {
a->val[i] = ((a->val[i] << 1) & 0x3FFFFFFF) | ((a->val[i - 1] & 0x20000000) >> 29);
}
a->val[0] = (a->val[0] << 1) & 0x3FFFFFFF;
}
// shift number to the right, i.e divide by 2 while rounding down.
// a must be normalized. The result is normalized.
void bn_rshift(bignum256 *a)
{
int i;
for (i = 0; i < 8; i++) {
a->val[i] = (a->val[i] >> 1) | ((a->val[i + 1] & 1) << 29);
}
a->val[8] >>= 1;
}
// sets bit in bignum
void bn_setbit(bignum256 *a, uint8_t bit)
{
a->val[bit / 30] |= (1u << (bit % 30));
}
// clears bit in bignum
void bn_clearbit(bignum256 *a, uint8_t bit)
{
a->val[bit / 30] &= ~(1u << (bit % 30));
}
// tests bit in bignum
uint32_t bn_testbit(bignum256 *a, uint8_t bit)
{
return a->val[bit / 30] & (1u << (bit % 30));
}
// a = b ^ c
void bn_xor(bignum256 *a, const bignum256 *b, const bignum256 *c)
{
int i;
for (i = 0; i < 9; i++) {
a->val[i] = b->val[i] ^ c->val[i];
}
}
// multiply x by 1/2 modulo prime.
// it computes x = (x & 1) ? (x + prime) >> 1 : x >> 1.
// assumes x is normalized.
// if x was partly reduced, it is also partly reduced on exit.
// function is constant time.
void bn_mult_half(bignum256 * x, const bignum256 *prime)
{
int j;
uint32_t xodd = -(x->val[0] & 1);
// compute x = x/2 mod prime
// if x is odd compute (x+prime)/2
uint32_t tmp1 = (x->val[0] + (prime->val[0] & xodd)) >> 1;
for (j = 0; j < 8; j++) {
uint32_t tmp2 = (x->val[j+1] + (prime->val[j+1] & xodd));
tmp1 += (tmp2 & 1) << 29;
x->val[j] = tmp1 & 0x3fffffff;
tmp1 >>= 30;
tmp1 += tmp2 >> 1;
}
x->val[8] = tmp1;
}
// multiply x by k modulo prime.
// assumes x is normalized, 0 <= k <= 4.
// guarantees x is partly reduced.
void bn_mult_k(bignum256 *x, uint8_t k, const bignum256 *prime)
{
int j;
for (j = 0; j < 9; j++) {
x->val[j] = k * x->val[j];
}
bn_fast_mod(x, prime);
}
// compute x = x mod prime by computing x >= prime ? x - prime : x.
// assumes x partly reduced, guarantees x fully reduced.
void bn_mod(bignum256 *x, const bignum256 *prime)
{
const int flag = bn_is_less(x, prime); // x < prime
bignum256 temp;
bn_subtract(x, prime, &temp); // temp = x - prime
bn_cmov(x, flag, x, &temp);
}
// auxiliary function for multiplication.
// compute k * x as a 540 bit number in base 2^30 (normalized).
// assumes that k and x are normalized.
void bn_multiply_long(const bignum256 *k, const bignum256 *x, uint32_t res[18])
{
int i, j;
uint64_t temp = 0;
// compute lower half of long multiplication
for (i = 0; i < 9; i++)
{
for (j = 0; j <= i; j++) {
// no overflow, since 9*2^60 < 2^64
temp += k->val[j] * (uint64_t)x->val[i - j];
}
res[i] = temp & 0x3FFFFFFFu;
temp >>= 30;
}
// compute upper half
for (; i < 17; i++)
{
for (j = i - 8; j < 9 ; j++) {
// no overflow, since 9*2^60 < 2^64
temp += k->val[j] * (uint64_t)x->val[i - j];
}
res[i] = temp & 0x3FFFFFFFu;
temp >>= 30;
}
res[17] = temp;
}
// auxiliary function for multiplication.
// reduces res modulo prime.
// assumes res normalized, res < 2^(30(i-7)) * 2 * prime
// guarantees res normalized, res < 2^(30(i-8)) * 2 * prime
void bn_multiply_reduce_step(uint32_t res[18], const bignum256 *prime, uint32_t i) {
// let k = i-8.
// on entry:
// 0 <= res < 2^(30k + 31) * prime
// estimate coef = (res / prime / 2^30k)
// by coef = res / 2^(30k + 256) rounded down
// 0 <= coef < 2^31
// subtract (coef * 2^(30k) * prime) from res
// note that we unrolled the first iteration
uint32_t j;
uint32_t coef = (res[i] >> 16) + (res[i + 1] << 14);
uint64_t temp = 0x2000000000000000ull + res[i - 8] - prime->val[0] * (uint64_t)coef;
assert (coef < 0x80000000u);
res[i - 8] = temp & 0x3FFFFFFF;
for (j = 1; j < 9; j++) {
temp >>= 30;
// Note: coeff * prime->val[j] <= (2^31-1) * (2^30-1)
// Hence, this addition will not underflow.
temp += 0x1FFFFFFF80000000ull + res[i - 8 + j] - prime->val[j] * (uint64_t)coef;
res[i - 8 + j] = temp & 0x3FFFFFFF;
// 0 <= temp < 2^61 + 2^30
}
temp >>= 30;
temp += 0x1FFFFFFF80000000ull + res[i - 8 + j];
res[i - 8 + j] = temp & 0x3FFFFFFF;
// we rely on the fact that prime > 2^256 - 2^224
// res = oldres - coef*2^(30k) * prime;
// and
// coef * 2^(30k + 256) <= oldres < (coef+1) * 2^(30k + 256)
// Hence, 0 <= res < 2^30k (2^256 + coef * (2^256 - prime))
// < 2^30k (2^256 + 2^31 * 2^224)
// < 2^30k (2 * prime)
}
// auxiliary function for multiplication.
// reduces x = res modulo prime.
// assumes res normalized, res < 2^270 * 2 * prime
// guarantees x partly reduced, i.e., x < 2 * prime
void bn_multiply_reduce(bignum256 *x, uint32_t res[18], const bignum256 *prime)
{
int i;
// res = k * x is a normalized number (every limb < 2^30)
// 0 <= res < 2^270 * 2 * prime.
for (i = 16; i >= 8; i--) {
bn_multiply_reduce_step(res, prime, i);
assert(res[i + 1] == 0);
}
// store the result
for (i = 0; i < 9; i++) {
x->val[i] = res[i];
}
}
// Compute x := k * x (mod prime)
// both inputs must be smaller than 180 * prime.
// result is partly reduced (0 <= x < 2 * prime)
// This only works for primes between 2^256-2^224 and 2^256.
void bn_multiply(const bignum256 *k, bignum256 *x, const bignum256 *prime)
{
uint32_t res[18] = {0};
bn_multiply_long(k, x, res);
bn_multiply_reduce(x, res, prime);
memzero(res, sizeof(res));
}
// partly reduce x modulo prime
// input x does not have to be normalized.
// x can be any number that fits.
// prime must be between (2^256 - 2^224) and 2^256
// result is partly reduced, smaller than 2*prime
void bn_fast_mod(bignum256 *x, const bignum256 *prime)
{
int j;
uint32_t coef;
uint64_t temp;
coef = x->val[8] >> 16;
// substract (coef * prime) from x
// note that we unrolled the first iteration
temp = 0x2000000000000000ull + x->val[0] - prime->val[0] * (uint64_t)coef;
x->val[0] = temp & 0x3FFFFFFF;
for (j = 1; j < 9; j++) {
temp >>= 30;
temp += 0x1FFFFFFF80000000ull + x->val[j] - prime->val[j] * (uint64_t)coef;
x->val[j] = temp & 0x3FFFFFFF;
}
}
// square root of x = x^((p+1)/4)
// http://en.wikipedia.org/wiki/Quadratic_residue#Prime_or_prime_power_modulus
// assumes x is normalized but not necessarily reduced.
// guarantees x is reduced
void bn_sqrt(bignum256 *x, const bignum256 *prime)
{
// this method compute x^1/2 = x^(prime+1)/4
uint32_t i, j, limb;
bignum256 res, p;
bn_one(&res);
// compute p = (prime+1)/4
memcpy(&p, prime, sizeof(bignum256));
bn_addi(&p, 1);
bn_rshift(&p);
bn_rshift(&p);
for (i = 0; i < 9; i++) {
// invariants:
// x = old(x)^(2^(i*30))
// res = old(x)^(p % 2^(i*30))
// get the i-th limb of prime - 2
limb = p.val[i];
for (j = 0; j < 30; j++) {
// invariants:
// x = old(x)^(2^(i*30+j))
// res = old(x)^(p % 2^(i*30+j))
// limb = (p % 2^(i*30+30)) / 2^(i*30+j)
if (i == 8 && limb == 0) break;
if (limb & 1) {
bn_multiply(x, &res, prime);
}
limb >>= 1;
bn_multiply(x, x, prime);
}
}
bn_mod(&res, prime);
memcpy(x, &res, sizeof(bignum256));
memzero(&res, sizeof(res));
memzero(&p, sizeof(p));
}
#if ! USE_INVERSE_FAST
// in field G_prime, small but slow
void bn_inverse(bignum256 *x, const bignum256 *prime)
{
// this method compute x^-1 = x^(prime-2)
uint32_t i, j, limb;
bignum256 res;
bn_one(&res);
for (i = 0; i < 9; i++) {
// invariants:
// x = old(x)^(2^(i*30))
// res = old(x)^((prime-2) % 2^(i*30))
// get the i-th limb of prime - 2
limb = prime->val[i];
// this is not enough in general but fine for secp256k1 & nist256p1 because prime->val[0] > 1
if (i == 0) limb -= 2;
for (j = 0; j < 30; j++) {
// invariants:
// x = old(x)^(2^(i*30+j))
// res = old(x)^((prime-2) % 2^(i*30+j))
// limb = ((prime-2) % 2^(i*30+30)) / 2^(i*30+j)
// early abort when only zero bits follow
if (i == 8 && limb == 0) break;
if (limb & 1) {
bn_multiply(x, &res, prime);
}
limb >>= 1;
bn_multiply(x, x, prime);
}
}
bn_mod(&res, prime);
memcpy(x, &res, sizeof(bignum256));
}
#else
// in field G_prime, big and complicated but fast
// the input must not be 0 mod prime.
// the result is smaller than prime
void bn_inverse(bignum256 *x, const bignum256 *prime)
{
int i, j, k, cmp;
struct combo {
uint32_t a[9];
int len1;
} us, vr, *odd, *even;
uint32_t pp[8];
uint32_t temp32;
uint64_t temp;
// The algorithm is based on Schroeppel et. al. "Almost Modular Inverse"
// algorithm. We keep four values u,v,r,s in the combo registers
// us and vr. us stores u in the first len1 limbs (little endian)
// and s in the last 9-len1 limbs (big endian). vr stores v and r.
// This is because both u*s and v*r are guaranteed to fit in 8 limbs, so
// their components are guaranteed to fit in 9. During the algorithm,
// the length of u and v shrinks while r and s grow.
// u,v,r,s correspond to F,G,B,C in Schroeppel's algorithm.
// reduce x modulo prime. This is necessary as it has to fit in 8 limbs.
bn_fast_mod(x, prime);
bn_mod(x, prime);
// convert x and prime to 8x32 bit limb form
temp32 = prime->val[0];
for (i = 0; i < 8; i++) {
temp32 |= prime->val[i + 1] << (30-2*i);
us.a[i] = pp[i] = temp32;
temp32 = prime->val[i + 1] >> (2+2*i);
}
temp32 = x->val[0];
for (i = 0; i < 8; i++) {
temp32 |= x->val[i + 1] << (30-2*i);
vr.a[i] = temp32;
temp32 = x->val[i + 1] >> (2+2*i);
}
us.len1 = 8;
vr.len1 = 8;
// set s = 1 and r = 0
us.a[8] = 1;
vr.a[8] = 0;
// set k = 0.
k = 0;
// only one of the numbers u,v can be even at any time. We
// let even point to that number and odd to the other.
// Initially the prime u is guaranteed to be odd.
odd = &us;
even = &vr;
// u = prime, v = x
// r = 0 , s = 1
// k = 0
for (;;) {
// invariants:
// let u = limbs us.a[0..u.len1-1] in little endian,
// let s = limbs us.a[u.len..8] in big endian,
// let v = limbs vr.a[0..u.len1-1] in little endian,
// let r = limbs vr.a[u.len..8] in big endian,
// r,s >= 0 ; u,v >= 1
// x*-r = u*2^k mod prime
// x*s = v*2^k mod prime
// u*s + v*r = prime
// floor(log2(u)) + floor(log2(v)) + k <= 510
// max(u,v) <= 2^k (*) see comment at end of loop
// gcd(u,v) = 1
// {odd,even} = {&us, &vr}
// odd->a[0] and odd->a[8] are odd
// even->a[0] or even->a[8] is even
//
// first u/v are large and r/s small
// later u/v are small and r/s large
assert(odd->a[0] & 1);
assert(odd->a[8] & 1);
// adjust length of even.
while (even->a[even->len1 - 1] == 0) {
even->len1--;
// if input was 0, return.
// This simple check prevents crashing with stack underflow
// or worse undesired behaviour for illegal input.
if (even->len1 < 0)
return;
}
// reduce even->a while it is even
while (even->a[0] == 0) {
// shift right first part of even by a limb
// and shift left second part of even by a limb.
for (i = 0; i < 8; i++) {
even->a[i] = even->a[i+1];
}
even->a[i] = 0;
even->len1--;
k += 32;
}
// count up to 32 zero bits of even->a.
j = 0;
while ((even->a[0] & (1u << j)) == 0) {
j++;
}
if (j > 0) {
// shift first part of even right by j bits.
for (i = 0; i + 1 < even->len1; i++) {
even->a[i] = (even->a[i] >> j) | (even->a[i + 1] << (32 - j));
}
even->a[i] = (even->a[i] >> j);
if (even->a[i] == 0) {
even->len1--;
} else {
i++;
}
// shift second part of even left by j bits.
for (; i < 8; i++) {
even->a[i] = (even->a[i] << j) | (even->a[i + 1] >> (32 - j));
}
even->a[i] = (even->a[i] << j);
// add j bits to k.
k += j;
}
// invariant is reestablished.
// now both a[0] are odd.
assert(odd->a[0] & 1);
assert(odd->a[8] & 1);
assert(even->a[0] & 1);
assert((even->a[8] & 1) == 0);
// cmp > 0 if us.a[0..len1-1] > vr.a[0..len1-1],
// cmp = 0 if equal, < 0 if less.
cmp = us.len1 - vr.len1;
if (cmp == 0) {
i = us.len1 - 1;
while (i >= 0 && us.a[i] == vr.a[i]) i--;
// both are equal to 1 and we are done.
if (i == -1)
break;
cmp = us.a[i] > vr.a[i] ? 1 : -1;
}
if (cmp > 0) {
even = &us;
odd = &vr;
} else {
even = &vr;
odd = &us;
}
// now even > odd.
// even->a[0..len1-1] = (even->a[0..len1-1] - odd->a[0..len1-1]);
temp = 1;
for (i = 0; i < odd->len1; i++) {
temp += 0xFFFFFFFFull + even->a[i] - odd->a[i];
even->a[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
for (; i < even->len1; i++) {
temp += 0xFFFFFFFFull + even->a[i];
even->a[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
// odd->a[len1..8] = (odd->b[len1..8] + even->b[len1..8]);
temp = 0;
for (i = 8; i >= even->len1; i--) {
temp += (uint64_t) odd->a[i] + even->a[i];
odd->a[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
for (; i >= odd->len1; i--) {
temp += (uint64_t) odd->a[i];
odd->a[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
// note that
// if u > v:
// u'2^k = (u - v) 2^k = x(-r) - xs = x(-(r+s)) = x(-r') mod prime
// u's' + v'r' = (u-v)s + v(r+s) = us + vr
// if u < v:
// v'2^k = (v - u) 2^k = xs - x(-r) = x(s+r) = xs' mod prime
// u's' + v'r' = u(s+r) + (v-u)r = us + vr
// even->a[0] is difference between two odd numbers, hence even.
// odd->a[8] is sum of even and odd number, hence odd.
assert(odd->a[0] & 1);
assert(odd->a[8] & 1);
assert((even->a[0] & 1) == 0);
// The invariants are (almost) reestablished.
// The invariant max(u,v) <= 2^k can be invalidated at this point,
// because odd->a[len1..8] was changed. We only have
//
// odd->a[len1..8] <= 2^{k+1}
//
// Since even->a[0] is even, k will be incremented at the beginning
// of the next loop while odd->a[len1..8] remains unchanged.
// So after that, odd->a[len1..8] <= 2^k will hold again.
}
// In the last iteration we had u = v and gcd(u,v) = 1.
// Hence, u=1, v=1, s+r = prime, k <= 510, 2^k > max(s,r) >= prime/2
// This implies 0 <= s < prime and 255 <= k <= 510.
//
// The invariants also give us x*s = 2^k mod prime,
// hence s = 2^k * x^-1 mod prime.
// We need to compute s/2^k mod prime.
// First we compute inverse = -prime^-1 mod 2^32, which we need later.
// We use the Explicit Quadratic Modular inverse algorithm.
// http://arxiv.org/pdf/1209.6626.pdf
// a^-1 = (2-a) * PROD_i (1 + (a - 1)^(2^i)) mod 2^32
// the product will converge quickly, because (a-1)^(2^i) will be
// zero mod 2^32 after at most five iterations.
// We want to compute -prime^-1 so we start with (pp[0]-2).
assert(pp[0] & 1);
uint32_t amone = pp[0]-1;
uint32_t inverse = pp[0] - 2;
while (amone) {
amone *= amone;
inverse *= (amone + 1);
}
while (k >= 32) {
// compute s / 2^32 modulo prime.
// Idea: compute factor, such that
// s + factor*prime mod 2^32 == 0
// i.e. factor = s * -1/prime mod 2^32.
// Then compute s + factor*prime and shift right by 32 bits.
uint32_t factor = (inverse * us.a[8]) & 0xffffffff;
temp = us.a[8] + (uint64_t) pp[0] * factor;
assert((temp & 0xffffffff) == 0);
temp >>= 32;
for (i = 0; i < 7; i++) {
temp += us.a[8-(i+1)] + (uint64_t) pp[i+1] * factor;
us.a[8-i] = temp & 0xffffffff;
temp >>= 32;
}
us.a[8-i] = temp & 0xffffffff;
k -= 32;
}
if (k > 0) {
// compute s / 2^k modulo prime.
// Same idea: compute factor, such that
// s + factor*prime mod 2^k == 0
// i.e. factor = s * -1/prime mod 2^k.
// Then compute s + factor*prime and shift right by k bits.
uint32_t mask = (1u << k) - 1;
uint32_t factor = (inverse * us.a[8]) & mask;
temp = (us.a[8] + (uint64_t) pp[0] * factor) >> k;
assert(((us.a[8] + pp[0] * factor) & mask) == 0);
for (i = 0; i < 7; i++) {
temp += (us.a[8-(i+1)] + (uint64_t) pp[i+1] * factor) << (32 - k);
us.a[8-i] = temp & 0xffffffff;
temp >>= 32;
}
us.a[8-i] = temp & 0xffffffff;
}
// convert s to bignum style
temp32 = 0;
for (i = 0; i < 8; i++) {
x->val[i] = ((us.a[8-i] << (2 * i)) & 0x3FFFFFFFu) | temp32;
temp32 = us.a[8-i] >> (30 - 2 * i);
}
x->val[i] = temp32;
// let's wipe all temp buffers
memzero(pp, sizeof(pp));
memzero(&us, sizeof(us));
memzero(&vr, sizeof(vr));
}
#endif
void bn_normalize(bignum256 *a) {
bn_addi(a, 0);
}
// add two numbers a = a + b
// assumes that a, b are normalized
// guarantees that a is normalized
void bn_add(bignum256 *a, const bignum256 *b)
{
int i;
uint32_t tmp = 0;
for (i = 0; i < 9; i++) {
tmp += a->val[i] + b->val[i];
a->val[i] = tmp & 0x3FFFFFFF;
tmp >>= 30;
}
}
void bn_addmod(bignum256 *a, const bignum256 *b, const bignum256 *prime)
{
int i;
for (i = 0; i < 9; i++) {
a->val[i] += b->val[i];
}
bn_fast_mod(a, prime);
}
void bn_addi(bignum256 *a, uint32_t b) {
int i;
uint32_t tmp = b;
for (i = 0; i < 9; i++) {
tmp += a->val[i];
a->val[i] = tmp & 0x3FFFFFFF;
tmp >>= 30;
}
}
void bn_subi(bignum256 *a, uint32_t b, const bignum256 *prime) {
assert (b <= prime->val[0]);
// the possible underflow will be taken care of when adding the prime
a->val[0] -= b;
bn_add(a, prime);
}
// res = a - b mod prime. More exactly res = a + (2*prime - b).
// b must be a partly reduced number
// result is normalized but not reduced.
void bn_subtractmod(const bignum256 *a, const bignum256 *b, bignum256 *res, const bignum256 *prime)
{
int i;
uint32_t temp = 1;
for (i = 0; i < 9; i++) {
temp += 0x3FFFFFFF + a->val[i] + 2u * prime->val[i] - b->val[i];
res->val[i] = temp & 0x3FFFFFFF;
temp >>= 30;
}
}
// res = a - b ; a > b
void bn_subtract(const bignum256 *a, const bignum256 *b, bignum256 *res)
{
int i;
uint32_t tmp = 1;
for (i = 0; i < 9; i++) {
tmp += 0x3FFFFFFF + a->val[i] - b->val[i];
res->val[i] = tmp & 0x3FFFFFFF;
tmp >>= 30;
}
}
// a / 58 = a (+r)
void bn_divmod58(bignum256 *a, uint32_t *r)
{
int i;
uint32_t rem, tmp;
rem = a->val[8] % 58;
a->val[8] /= 58;
for (i = 7; i >= 0; i--) {
// invariants:
// rem = old(a) >> 30(i+1) % 58
// a[i+1..8] = old(a[i+1..8])/58
// a[0..i] = old(a[0..i])
// 2^30 == 18512790*58 + 4
tmp = rem * 4 + a->val[i];
// set a[i] = (rem * 2^30 + a[i])/58
// = rem * 18512790 + (rem * 4 + a[i])/58
a->val[i] = rem * 18512790 + (tmp / 58);
// set rem = (rem * 2^30 + a[i]) mod 58
// = (rem * 4 + a[i]) mod 58
rem = tmp % 58;
}
*r = rem;
}
// a / 1000 = a (+r)
void bn_divmod1000(bignum256 *a, uint32_t *r)
{
int i;
uint32_t rem, tmp;
rem = a->val[8] % 1000;
a->val[8] /= 1000;
for (i = 7; i >= 0; i--) {
// invariants:
// rem = old(a) >> 30(i+1) % 1000
// a[i+1..8] = old(a[i+1..8])/1000
// a[0..i] = old(a[0..i])
// 2^30 == 1073741*1000 + 824
tmp = rem * 824 + a->val[i];
// set a[i] = (rem * 2^30 + a[i])/1000
// = rem * 1073741 + (rem * 824 + a[i])/1000
a->val[i] = rem * 1073741 + (tmp / 1000);
// set rem = (rem * 2^30 + a[i]) mod 1000
// = (rem * 824 + a[i]) mod 1000
rem = tmp % 1000;
}
*r = rem;
}
size_t bn_format(const bignum256 *amnt, const char *prefix, const char *suffix, unsigned int decimals, int exponent, bool trailing, char *out, size_t outlen)
{
size_t prefixlen = prefix ? strlen(prefix) : 0;
size_t suffixlen = suffix ? strlen(suffix) : 0;
/* add prefix to beginning of out buffer */
if (prefixlen) {
memcpy(out, prefix, prefixlen);
}
/* add suffix to end of out buffer */
if (suffixlen) {
memcpy(&out[outlen - suffixlen - 1], suffix, suffixlen);
}