forked from knaughten/roms_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmip_tamura_circumpolar_plot.py
151 lines (140 loc) · 5.79 KB
/
mip_tamura_circumpolar_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from numpy import *
from netCDF4 import Dataset
from matplotlib.pyplot import *
from matplotlib.collections import PatchCollection
#from matplotlib.colors import *
# Import FESOM scripts (have to modify path first)
import sys
sys.path.insert(0, '/short/y99/kaa561/fesomtools')
from patches import *
def mip_tamura_circumpolar_plot ():
# File paths
# FESOM mesh paths
fesom_mesh_path_lr = '/short/y99/kaa561/FESOM/mesh/meshA/'
fesom_mesh_path_hr = '/short/y99/kaa561/FESOM/mesh/meshB/'
# CICE 1992-2013 mean ice production files (precomputed in calc_ice_prod.py)
cice_file = '/short/m68/kaa561/metroms_iceshelf/tmproms/run/intercomparison/ice_prod_1992_2013.nc'
# FESOM 1992-2013 mean ice production files (precomputed in calc_annual_ice_prod.py in fesomtools)
fesom_lr_file = '/short/y99/kaa561/FESOM/intercomparison_lowres/output/ice_prod_1992_2013.nc'
fesom_hr_file = '/short/y99/kaa561/FESOM/intercomparison_highres/output/ice_prod_1992_2013.nc'
# Tamura's 1992-2013 mean ice production (precomputed on desktop with Matlab)
tamura_file = '/short/m68/kaa561/tamura_1992_2013_monthly_climatology.nc'
# FESOM plotting parameters
circumpolar = True
mask_cavities = True
# Degrees to radians conversion factor
deg2rad = pi/180.0
# Northern boundary for plot: 64S
nbdry = -64 + 90
# Maximum value to plot
plot_bound = 30
print 'Processing Tamura obs'
id = Dataset(tamura_file, 'r')
tamura_lon = id.variables['longitude'][:,:]
tamura_lat = id.variables['latitude'][:,:]
# Read precomputed sea ice formation (already in m/y)
tamura_data = id.variables['ice_prod'][:,:]
id.close()
# Polar coordinates for plotting
tamura_x = -(tamura_lat+90)*cos(tamura_lon*deg2rad+pi/2)
tamura_y = (tamura_lat+90)*sin(tamura_lon*deg2rad+pi/2)
print 'Processing MetROMS'
id = Dataset(cice_file, 'r')
cice_lon_tmp = id.variables['TLON'][:,:]
cice_lat_tmp = id.variables['TLAT'][:,:]
# Read precomputed sea ice formation (already in m/y)
cice_data_tmp = id.variables['ice_prod'][:,:]
id.close()
# Wrap the periodic boundary by 1 cell
cice_lon = ma.empty([size(cice_lon_tmp,0), size(cice_lon_tmp,1)+1])
cice_lat = ma.empty([size(cice_lat_tmp,0), size(cice_lat_tmp,1)+1])
cice_data = ma.empty([size(cice_data_tmp,0), size(cice_data_tmp,1)+1])
cice_lon[:,:-1] = cice_lon_tmp
cice_lon[:,-1] = cice_lon_tmp[:,0]
cice_lat[:,:-1] = cice_lat_tmp
cice_lat[:,-1] = cice_lat_tmp[:,0]
cice_data[:,:-1] = cice_data_tmp
cice_data[:,-1] = cice_data_tmp[:,0]
# Polar coordinates for plotting
cice_x = -(cice_lat+90)*cos(cice_lon*deg2rad+pi/2)
cice_y = (cice_lat+90)*sin(cice_lon*deg2rad+pi/2)
print 'Processing low-res FESOM'
# Build mesh
elements_lr, patches_lr = make_patches(fesom_mesh_path_lr, circumpolar, mask_cavities)
# Read precomputed sea ice formation (already in m/y)
id = Dataset(fesom_lr_file, 'r')
fesom_data_nodes_lr = id.variables['ice_prod'][:]
id.close()
# Find element-averages
fesom_data_lr = []
for elm in elements_lr:
if not elm.cavity:
fesom_data_lr.append(mean(array([fesom_data_nodes_lr[elm.nodes[0].id], fesom_data_nodes_lr[elm.nodes[1].id], fesom_data_nodes_lr[elm.nodes[2].id]])))
fesom_data_lr = array(fesom_data_lr)
print 'Processing high-res FESOM'
elements_hr, patches_hr = make_patches(fesom_mesh_path_hr, circumpolar, mask_cavities)
id = Dataset(fesom_hr_file, 'r')
fesom_data_nodes_hr = id.variables['ice_prod'][:]
id.close()
fesom_data_hr = []
for elm in elements_hr:
if not elm.cavity:
fesom_data_hr.append(mean(array([fesom_data_nodes_hr[elm.nodes[0].id], fesom_data_nodes_hr[elm.nodes[1].id], fesom_data_nodes_hr[elm.nodes[2].id]])))
fesom_data_hr = array(fesom_data_hr)
#bounds = linspace(0, plot_bound**(1.0/3), num=100)**3
#norm = BoundaryNorm(boundaries=bounds, ncolors=256)
print 'Plotting'
fig = figure(figsize=(10,12))
gs = GridSpec(2,2)
gs.update(left=0.05, right=0.95, bottom=0.09, top=0.9, wspace=0.02, hspace=0.1)
# Tamura obs
ax = subplot(gs[0,0], aspect='equal')
img = pcolor(tamura_x, tamura_y, tamura_data, vmin=0, vmax=plot_bound, cmap='jet')
xlim([-nbdry, nbdry])
ylim([-nbdry, nbdry])
ax.set_xticks([])
ax.set_yticks([])
title('Observations', fontsize=24)
# MetROMS
ax = subplot(gs[0,1], aspect='equal')
img = pcolor(cice_x, cice_y, cice_data, vmin=0, vmax=plot_bound, cmap='jet') #, norm=norm)
xlim([-nbdry, nbdry])
ylim([-nbdry, nbdry])
ax.set_xticks([])
ax.set_yticks([])
title('MetROMS', fontsize=24)
# FESOM low-res
ax = subplot(gs[1,0], aspect='equal')
img = PatchCollection(patches_lr, cmap='jet') #, norm=norm)
img.set_array(fesom_data_lr)
img.set_clim(0, plot_bound)
img.set_edgecolor('face')
ax.add_collection(img)
xlim([-nbdry, nbdry])
ylim([-nbdry, nbdry])
ax.set_xticks([])
ax.set_yticks([])
title('FESOM (low-res)', fontsize=24)
# FESOM high-res
ax = subplot(gs[1,1], aspect='equal')
img = PatchCollection(patches_hr, cmap='jet') #, norm=norm)
img.set_array(fesom_data_hr)
img.set_clim(0, plot_bound)
img.set_edgecolor('face')
ax.add_collection(img)
xlim([-nbdry, nbdry])
ylim([-nbdry, nbdry])
ax.set_xticks([])
ax.set_yticks([])
title('FESOM (high-res)', fontsize=24)
# Colourbar below
cbaxes = fig.add_axes([0.3, 0.03, 0.4, 0.03])
cbar = colorbar(img, cax=cbaxes, extend='max', orientation='horizontal')
cbar.ax.tick_params(labelsize=16)
# Main title
suptitle('Sea ice production (m/y), 1992-2013 mean', fontsize=28)
fig.show()
fig.savefig('seaice_tamura.png')
# Command-line interface
if __name__ == "__main__":
mip_tamura_circumpolar_plot()