forked from knaughten/roms_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmip_sfc_stress.py
215 lines (204 loc) · 7.78 KB
/
mip_sfc_stress.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from netCDF4 import Dataset
from numpy import *
from matplotlib.pyplot import *
from matplotlib.collections import PatchCollection
from rotate_vector_roms import *
# Import FESOM scripts (have to modify path first)
import sys
sys.path.insert(0, '/short/y99/kaa561/fesomtools')
from patches import *
from unrotate_vector import *
def mip_sfc_stress ():
# File paths
roms_grid = '/short/m68/kaa561/metroms_iceshelf/apps/common/grid/circ30S_quarterdegree.nc'
roms_file = '/short/m68/kaa561/metroms_iceshelf/tmproms/run/intercomparison/stress_firstyear.nc' # Already averaged over first year
fesom_mesh_path_lr = '/short/y99/kaa561/FESOM/mesh/meshA/'
fesom_mesh_path_hr = '/short/y99/kaa561/FESOM/mesh/meshB/'
fesom_file_lr = '/short/y99/kaa561/FESOM/intercomparison_lowres/output/MK44005.1992.forcing.diag.nc'
fesom_file_hr = '/short/y99/kaa561/FESOM/intercomparison_highres/output/MK44005.1992.forcing.diag.nc'
# Degrees to radians conversion factor
deg2rad = pi/180.0
# Northern boundaries for plots
nbdry_acc = -30+90
nbdry_shelf = -64+90
# Bounds for colour scale
colour_bound_acc = 0.25
colour_bound_shelf = 0.25
print 'Processing ROMS'
# Read grid
id = Dataset(roms_grid, 'r')
roms_lat = id.variables['lat_rho'][:,:]
roms_lon = id.variables['lon_rho'][:,:]
angle = id.variables['angle'][:,:]
zice = id.variables['zice'][:,:]
id.close()
# Read surface stress
id = Dataset(roms_file, 'r')
sustr_tmp = id.variables['sustr'][0,:,:]
svstr_tmp = id.variables['svstr'][0,:,:]
id.close()
# Unrotate
sustr, svstr = rotate_vector_roms(sustr_tmp, svstr_tmp, angle)
# Get magnitude
roms_stress = sqrt(sustr**2 + svstr**2)
# Mask cavities
roms_stress = ma.masked_where(zice<0, roms_stress)
# Calculate polar projection
roms_x = -(roms_lat+90)*cos(roms_lon*deg2rad+pi/2)
roms_y = (roms_lat+90)*sin(roms_lon*deg2rad+pi/2)
print 'Processing low-res FESOM'
# Build mesh and patches
elements_lr, patches_lr = make_patches(fesom_mesh_path_lr, circumpolar=True, mask_cavities=True)
# Read rotated and and lon
f = open(fesom_mesh_path_lr + 'nod2d.out', 'r')
f.readline()
rlon_lr = []
rlat_lr = []
for line in f:
tmp = line.split()
lon_tmp = float(tmp[1])
if lon_tmp < -180:
lon_tmp += 360
elif lon_tmp > 180:
lon_tmp -= 360
rlon_lr.append(lon_tmp)
rlat_lr.append(float(tmp[2]))
f.close()
rlon_lr = array(rlon_lr)
rlat_lr = array(rlat_lr)
# Read surface stress
id = Dataset(fesom_file_lr, 'r')
stress_x_tmp = mean(id.variables['stress_x'][:,:], axis=0)
stress_y_tmp = mean(id.variables['stress_y'][:,:], axis=0)
id.close()
# Unrotate
stress_x_lr, stress_y_lr = unrotate_vector(rlon_lr, rlat_lr, stress_x_tmp, stress_y_tmp)
# Get magnitude
fesom_stress_lr_nodes = sqrt(stress_x_lr**2 + stress_y_lr**2)
# Average over elements
fesom_stress_lr = []
for elm in elements_lr:
if not elm.cavity:
fesom_stress_lr.append(mean([fesom_stress_lr_nodes[elm.nodes[0].id], fesom_stress_lr_nodes[elm.nodes[1].id], fesom_stress_lr_nodes[elm.nodes[2].id]]))
print 'Processing high-res FESOM'
elements_hr, patches_hr = make_patches(fesom_mesh_path_hr, circumpolar=True, mask_cavities=True)
f = open(fesom_mesh_path_hr + 'nod2d.out', 'r')
f.readline()
rlon_hr = []
rlat_hr = []
for line in f:
tmp = line.split()
lon_tmp = float(tmp[1])
if lon_tmp < -180:
lon_tmp += 360
elif lon_tmp > 180:
lon_tmp -= 360
rlon_hr.append(lon_tmp)
rlat_hr.append(float(tmp[2]))
f.close()
rlon_hr = array(rlon_hr)
rlat_hr = array(rlat_hr)
id = Dataset(fesom_file_hr, 'r')
stress_x_tmp = mean(id.variables['stress_x'][:,:], axis=0)
stress_y_tmp = mean(id.variables['stress_y'][:,:], axis=0)
id.close()
stress_x_hr, stress_y_hr = unrotate_vector(rlon_hr, rlat_hr, stress_x_tmp, stress_y_tmp)
fesom_stress_hr_nodes = sqrt(stress_x_hr**2 + stress_y_hr**2)
fesom_stress_hr = []
for elm in elements_hr:
if not elm.cavity:
fesom_stress_hr.append(mean([fesom_stress_hr_nodes[elm.nodes[0].id], fesom_stress_hr_nodes[elm.nodes[1].id], fesom_stress_hr_nodes[elm.nodes[2].id]]))
print 'Plotting'
# ACC
fig = figure(figsize=(19,8))
fig.patch.set_facecolor('white')
gs = GridSpec(1,3)
gs.update(left=0.05, right=0.95, bottom=0.1, top=0.85, wspace=0.05)
# ROMS
ax = subplot(gs[0,0], aspect='equal')
ax.pcolor(roms_x, roms_y, roms_stress, vmin=0, vmax=colour_bound_acc, cmap='jet')
xlim([-nbdry_acc, nbdry_acc])
ylim([-nbdry_acc, nbdry_acc])
title('a) MetROMS', fontsize=28)
ax.set_xticks([])
ax.set_yticks([])
# FESOM (low-res)
ax = subplot(gs[0,1], aspect='equal')
img = PatchCollection(patches_lr, cmap='jet')
img.set_array(array(fesom_stress_lr))
img.set_clim(vmin=0, vmax=colour_bound_acc)
img.set_edgecolor('face')
ax.add_collection(img)
xlim([-nbdry_acc, nbdry_acc])
ylim([-nbdry_acc, nbdry_acc])
title('b) FESOM (low-res)', fontsize=28)
ax.set_xticks([])
ax.set_yticks([])
# FESOM (high-res)
ax = subplot(gs[0,2], aspect='equal')
img = PatchCollection(patches_hr, cmap='jet')
img.set_array(array(fesom_stress_hr))
img.set_clim(vmin=0, vmax=colour_bound_acc)
img.set_edgecolor('face')
ax.add_collection(img)
xlim([-nbdry_acc, nbdry_acc])
ylim([-nbdry_acc, nbdry_acc])
title('c) FESOM (high-res)', fontsize=28)
ax.set_xticks([])
ax.set_yticks([])
# Add a horizontal colourbar on the bottom
cbaxes = fig.add_axes([0.3, 0.05, 0.4, 0.04])
cbar = colorbar(img, orientation='horizontal', cax=cbaxes, extend='max', ticks=arange(0, colour_bound_acc+0.05, 0.05))
cbar.ax.tick_params(labelsize=20)
# Main title
suptitle(r'Ocean surface stress (N/m$^2$), 1992 mean', fontsize=34)
fig.show()
fig.savefig('sfc_stress_acc.png')
# Continental shelf
fig = figure(figsize=(19,8))
fig.patch.set_facecolor('white')
gs = GridSpec(1,3)
gs.update(left=0.05, right=0.95, bottom=0.1, top=0.85, wspace=0.05)
# ROMS
ax = subplot(gs[0,0], aspect='equal')
ax.pcolor(roms_x, roms_y, roms_stress, vmin=0, vmax=colour_bound_shelf, cmap='jet')
xlim([-nbdry_shelf, nbdry_shelf])
ylim([-nbdry_shelf, nbdry_shelf])
title('a) MetROMS', fontsize=28)
ax.set_xticks([])
ax.set_yticks([])
# FESOM (low-res)
ax = subplot(gs[0,1], aspect='equal')
img = PatchCollection(patches_lr, cmap='jet')
img.set_array(array(fesom_stress_lr))
img.set_clim(vmin=0, vmax=colour_bound_shelf)
img.set_edgecolor('face')
ax.add_collection(img)
xlim([-nbdry_shelf, nbdry_shelf])
ylim([-nbdry_shelf, nbdry_shelf])
title('b) FESOM (low-res)', fontsize=28)
ax.set_xticks([])
ax.set_yticks([])
# FESOM (high-res)
ax = subplot(gs[0,2], aspect='equal')
img = PatchCollection(patches_hr, cmap='jet')
img.set_array(array(fesom_stress_hr))
img.set_clim(vmin=0, vmax=colour_bound_shelf)
img.set_edgecolor('face')
ax.add_collection(img)
xlim([-nbdry_shelf, nbdry_shelf])
ylim([-nbdry_shelf, nbdry_shelf])
title('c) FESOM (high-res)', fontsize=28)
ax.set_xticks([])
ax.set_yticks([])
# Add a horizontal colourbar on the bottom
cbaxes = fig.add_axes([0.3, 0.05, 0.4, 0.04])
cbar = colorbar(img, orientation='horizontal', cax=cbaxes, extend='max', ticks=arange(0, colour_bound_shelf+0.05, 0.05))
cbar.ax.tick_params(labelsize=20)
# Main title
suptitle(r'Ocean surface stress (N/m$^2$), 1992 mean', fontsize=34)
fig.show()
fig.savefig('sfc_stress_shelf.png')
# Command-line interface
if __name__ == "__main__":
mip_sfc_stress()