forked from knaughten/roms_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mip_scatterplot.py
280 lines (266 loc) · 11.1 KB
/
mip_scatterplot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
from numpy import *
from matplotlib.pyplot import *
def mip_scatterplot (roms_logfile, roms_logfile_bs, fesom_logfile_lr, fesom_logfile_bs_lr, fesom_logfile_hr, fesom_logfile_bs_hr):
# Year simulations start
year_start = 1992
# Years to average over
calc_start = 2002
calc_end = 2016
# Number of output steps per year in FESOM
peryear = 365/5
# Name of each ice shelf
names = ['Larsen D', 'Larsen C', 'Wilkins & George VI & Stange', 'Filchner-Ronne', 'Abbot', 'Pine Island', 'Thwaites', 'Dotson', 'Getz', 'Nickerson', 'Sulzberger', 'Mertz', 'Totten & Moscow University', 'Shackleton', 'West', 'Amery', 'Prince Harald', 'Baudouin & Borchgrevink', 'Lazarev', 'Nivl', 'Fimbul & Jelbart & Ekstrom', 'Brunt & Riiser-Larsen', 'Ross']
# Observed mass loss (Rignot 2013) and uncertainty for each ice shelf, in Gt/y
obs_massloss = [1.4, 20.7, 135.4, 155.4, 51.8, 101.2, 97.5, 45.2, 144.9, 4.2, 18.2, 7.9, 90.6, 72.6, 27.2, 35.5, -2, 21.6, 6.3, 3.9, 26.8, 9.7, 47.7]
obs_massloss_error = [14, 67, 40, 45, 19, 8, 7, 4, 14, 2, 3, 3, 8, 15, 10, 23, 3, 18, 2, 2, 14, 16, 34]
num_shelves = len(obs_massloss)
# Some Bellingshausen ice shelves were split up later
names_bs = ['Wilkins Ice Shelf', 'Stange Ice Shelf', 'George VI Ice Shelf']
obs_massloss_bs = [18.4, 28, 89]
obs_massloss_error_bs = [17, 6, 17]
num_shelves_bs = len(obs_massloss_bs)
# Order of indices for the ice shelves to be plotted on the x-axis
# (0-based, assuming the Bellingshausen ice shelves have been tacked onto
# the end of the original arrays)
order = [3, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 22, 10, 9, 8, 7, 6, 5, 4, 24, 25, 23, 1, 0]
# Read ROMS logfile
roms_time = []
f = open(roms_logfile, 'r')
# Skip the first line (header for time array)
f.readline()
for line in f:
try:
roms_time.append(float(line))
except(ValueError):
# Reached the header for the next variable
break
# Set up array for mass loss values at each ice shelf
roms_massloss_ts = empty([num_shelves, len(roms_time)])
# Skip total mass loss
for line in f:
try:
tmp = float(line)
except(ValueError):
# Reaced the header for the first ice shelf
break
index = 0
# Loop over ice shelves
while index < num_shelves:
t = 0
for line in f:
try:
roms_massloss_ts[index, t] = float(line)
t += 1
except(ValueError):
# Reached the header for the next ice shelf
break
index +=1
f.close()
# Add start year to ROMS time array
roms_time = array(roms_time) + year_start
# Average between given years
t_start = nonzero(roms_time >= calc_start)[0][0]
if calc_end == 2016:
t_end = size(roms_time)
else:
t_end = nonzero(roms_time >= calc_end+1)[0][0]
roms_massloss = mean(roms_massloss_ts[:,t_start:t_end], axis=1)
# Repeat for Bellingshausen
f = open(roms_logfile_bs, 'r')
f.readline()
# Skip the time values (should be the same)
for line in f:
try:
tmp = float(line)
except(ValueError):
# Reached the header for the next variable
break
roms_massloss_bs_ts = empty([num_shelves_bs, len(roms_time)])
index = 0
while index < num_shelves_bs:
t = 0
for line in f:
try:
roms_massloss_bs_ts[index, t] = float(line)
t += 1
except(ValueError):
break
index +=1
f.close()
t_start = nonzero(roms_time >= calc_start)[0][0]
if calc_end == 2016:
t_end = size(roms_time)
else:
t_end = nonzero(roms_time >= calc_end+1)[0][0]
roms_massloss_bs = mean(roms_massloss_bs_ts[:,t_start:t_end], axis=1)
# Read FESOM timeseries
# Low-res
f = open(fesom_logfile_lr, 'r')
# Skip the first line (header)
f.readline()
# Skip total mass loss
num_time = 0
for line in f:
try:
tmp = float(line)
num_time += 1
except(ValueError):
# Reached the header for the next variable
break
# Set up array for mass loss values at each ice shelf
fesom_massloss_ts_lr = empty([num_shelves, num_time])
# Loop over ice shelves
index = 0
while index < num_shelves:
t = 0
for line in f:
try:
fesom_massloss_ts_lr[index,t] = float(line)
t += 1
except(ValueError):
# Reached the header for the next ice shelf
break
index += 1
f.close()
# Average between given years
fesom_massloss_lr = mean(fesom_massloss_ts_lr[:,peryear*(calc_start-year_start):peryear*(calc_end+1-year_start)], axis=1)
# Repeat for Bellingshausen
f = open(fesom_logfile_bs_lr, 'r')
f.readline()
fesom_massloss_bs_ts_lr = empty([num_shelves_bs, num_time])
index = 0
while index < num_shelves_bs:
t = 0
for line in f:
try:
fesom_massloss_bs_ts_lr[index,t] = float(line)
t += 1
except(ValueError):
break
index += 1
f.close()
fesom_massloss_bs_lr = mean(fesom_massloss_bs_ts_lr[:,peryear*(calc_start-year_start):peryear*(calc_end+1-year_start)], axis=1)
# Repeat for high-res
f = open(fesom_logfile_hr, 'r')
f.readline()
num_time = 0
for line in f:
try:
tmp = float(line)
num_time += 1
except(ValueError):
break
fesom_massloss_ts_hr = empty([num_shelves, num_time])
index = 0
while index < num_shelves:
t = 0
for line in f:
try:
fesom_massloss_ts_hr[index,t] = float(line)
t += 1
except(ValueError):
break
index += 1
f.close()
fesom_massloss_hr = mean(fesom_massloss_ts_hr[:,peryear*(calc_start-year_start):peryear*(calc_end+1-year_start)], axis=1)
# High-res Bellingshausen
f = open(fesom_logfile_bs_hr, 'r')
f.readline()
fesom_massloss_bs_ts_hr = empty([num_shelves_bs, num_time])
index = 0
while index < num_shelves_bs:
t = 0
for line in f:
try:
fesom_massloss_bs_ts_hr[index,t] = float(line)
t += 1
except(ValueError):
break
index += 1
f.close()
fesom_massloss_bs_hr = mean(fesom_massloss_bs_ts_hr[:,peryear*(calc_start-year_start):peryear*(calc_end+1-year_start)], axis=1)
# Concatenate the Bellingshausen arrays onto the ends of the original arrays
names = names + names_bs
obs_massloss = obs_massloss + obs_massloss_bs
obs_massloss_error = obs_massloss_error + obs_massloss_error_bs
roms_massloss = concatenate((roms_massloss, roms_massloss_bs))
fesom_massloss_lr = concatenate((fesom_massloss_lr, fesom_massloss_bs_lr))
fesom_massloss_hr = concatenate((fesom_massloss_hr, fesom_massloss_bs_hr))
num_shelves_plot = len(order)
# Figure out error values, in correct order for plotting
roms_error = []
fesom_error_lr = []
fesom_error_hr = []
error_bars = []
labels = []
for index in order:
#obs_min = obs_massloss[index] - obs_massloss_error[index]
#obs_max = obs_massloss[index] + obs_massloss_error[index]
#if roms_massloss[index] < obs_min:
# roms_error.append(roms_massloss[index] - obs_min)
#elif roms_massloss[index] > obs_max:
# roms_error.append(roms_massloss[index] - obs_max)
#else:
# roms_error.append(0)
#if fesom_massloss_lr[index] < obs_min:
# fesom_error_lr.append(fesom_massloss_lr[index] - obs_min)
#elif fesom_massloss_lr[index] > obs_max:
# fesom_error_lr.append(fesom_massloss_lr[index] - obs_max)
#else:
# fesom_error_lr.append(0)
#if fesom_massloss_hr[index] < obs_min:
# fesom_error_hr.append(fesom_massloss_hr[index] - obs_min)
#elif fesom_massloss_hr[index] > obs_max:
# fesom_error_hr.append(fesom_massloss_hr[index] - obs_max)
#else:
# fesom_error_hr.append(0)
roms_error.append(roms_massloss[index] - obs_massloss[index])
fesom_error_lr.append(fesom_massloss_lr[index] - obs_massloss[index])
fesom_error_hr.append(fesom_massloss_hr[index] - obs_massloss[index])
error_bars.append(obs_massloss_error[index])
labels.append(names[index])
# Plot
fig = figure(figsize=(10,7))
gs = GridSpec(1,1)
gs.update(left=0.1, right=0.9, bottom=0.4, top=0.9)
ax = subplot(gs[0,0])
# Alternate background between white and light blue to split up regions
axvspan(0.5, 6.5, facecolor='b', alpha=0.1)
axvspan(7.5, 11.5, facecolor='b', alpha=0.1)
axvspan(14.5, 18.5, facecolor='b', alpha=0.1)
axvspan(22.5, 25, facecolor='b', alpha=0.1)
# Region labels
text(0, 80, 'FR', fontsize=14, ha='center')
text(3.5, 80, 'EWed', fontsize=14, ha='center')
text(7, 80, 'Am', fontsize=14, ha='center')
text(9.5, 80, 'Aus', fontsize=14, ha='center')
text(13, 80, 'RS', fontsize=14, ha='center')
text(16.5, 80, 'AS', fontsize=14, ha='center')
text(20.5, 80, 'BS', fontsize=14, ha='center')
text(23.5, 80, 'Lr', fontsize=14, ha='center')
# Black line at zero
plot(range(-1,num_shelves_plot+1), zeros(num_shelves_plot+2), color='black', linewidth=3)
plot(range(num_shelves_plot), roms_error, 'o', color=(0.08, 0.4, 0.79), ms=10, label='MetROMS')
plot(range(num_shelves_plot), fesom_error_lr, 'o', color=(0.06, 0.73, 0.1), ms=10, label='FESOM (low-res)')
plot(range(num_shelves_plot), fesom_error_hr, 'o', color=(0.73, 0.06, 0.69), ms=10, label='FESOM (high-res)')
grid(True)
xlim([-0.5, num_shelves_plot-0.5])
xticks(range(num_shelves_plot), labels, rotation=90)
ylabel('Gt/y', fontsize=14)
title('Bias in Ice Shelf Basal Mass Loss', fontsize=18)
# Make legend
legend(numpoints=1,bbox_to_anchor=(0.75,-0.3)) #loc='lower left')
setp(gca().get_legend().get_texts(), fontsize='13')
# Error bars on top
errorbar(range(num_shelves_plot), zeros(num_shelves_plot), yerr=error_bars, color='black', capthick=1)
fig.show()
fig.savefig('scatterplot.png')
# Command-line interface
if __name__ == "__main__":
roms_logfile = raw_input("Path to ROMS logfile from timeseries_massloss.py: ")
roms_logfile_bs = raw_input("Path to ROMS logfile from timeseries_massloss_bellingshausen.py: ")
fesom_logfile_lr = raw_input("Path to FESOM low-res logfile from timeseries_massloss.py: ")
fesom_logfile_bs_lr = raw_input("Path to FESOM low-res logfile from timeseries_massloss_bellingshausen.py: ")
fesom_logfile_hr = raw_input("Path to FESOM high-res logfile from timeseries_massloss.py: ")
fesom_logfile_bs_hr = raw_input("Path to FESOM high-res logfile from timeseries_massloss_bellingshausen.py: ")
mip_scatterplot(roms_logfile, roms_logfile_bs, fesom_logfile_lr, fesom_logfile_bs_lr, fesom_logfile_hr, fesom_logfile_bs_hr)