forked from knaughten/roms_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mip_drift_slices.py
418 lines (403 loc) · 18.4 KB
/
mip_drift_slices.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
from netCDF4 import Dataset
from numpy import *
from matplotlib.pyplot import *
from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection
from calc_z import *
from interp_lon_roms import *
# Import FESOM scripts (have to modify path first)
import sys
sys.path.insert(0, '/short/y99/kaa561/fesomtools')
from fesom_grid import *
from fesom_sidegrid import *
from triangle_area import *
from in_triangle import *
# Make a 3x2 plot of temperature (left) and salinity (right) through 0E.
# The top row is the initial conditions from ECCO2. The middle and bottom rows
# are the last January of the simulation (monthly average) from MetROMS and
# FESOM respectively.
# Input:
# roms_grid = path to ROMS grid file
# roms_file = path to file containing Jan 2016 monthly average of temperature
# and salinity in ROMS
# fesom_mesh_path_lr, fesom_mesh_path_hr = paths to FESOM mesh directories for
# low-res and high-res respectively
# fesom_file_lr, fesom_file_hr = paths to files containing Jan 2016 monthly
# averages of temperature and salinity, in low-res FESOM and
# high-res FESOM respectively
def mip_drift_slices (roms_grid, roms_file, fesom_mesh_path_lr, fesom_file_lr, fesom_mesh_path_hr, fesom_file_hr):
# Paths to ECCO2 files with initial conditions for temp and salt
ecco_temp_file = '/short/m68/kaa561/metroms_iceshelf/data/originals/ECCO2/THETA.1440x720x50.199201.nc'
ecco_salt_file = '/short/m68/kaa561/metroms_iceshelf/data/originals/ECCO2/SALT.1440x720x50.199201.nc'
# Longitude to interpolate to (OE)
lon0 = 0
# Bounds on plot
lat_min = -73
lat_max = -30
depth_min = -6000
depth_max = 0
# ROMS grid parameters
theta_s = 7.0
theta_b = 2.0
hc = 250
N = 31
# Bounds on colour scales for temperature and salinity
temp_min = -2
temp_max = 6
salt_min = 33.9
salt_max = 34.9
# Contours to overlay
temp_contour = 0.75
salt_contour = 34.5
# Parameters for FESOM regular grid interpolation (needed for contours)
num_lat = 500
num_depth = 250
# Get longitude for the title
if lon0 < 0:
lon_string = str(int(round(-lon0))) + r'$^{\circ}$W'
else:
lon_string = str(int(round(lon0))) + r'$^{\circ}$E'
print 'Processing ECCO2'
id = Dataset(ecco_temp_file, 'r')
# Read grid variables
ecco_lat = id.variables['LATITUDE_T'][:]
ecco_depth = -1*id.variables['DEPTH_T'][:]
if lon0 == 0:
# Hard-coded lon0 = 0E: average between the first (0.125 E) and last
# (359.875 E = -0.125 W) indices in the regular ECCO2 grid
ecco_temp = 0.5*(id.variables['THETA'][0,:,:,0] + id.variables['THETA'][0,:,:,-1])
id.close()
id = Dataset(ecco_salt_file, 'r')
ecco_salt = 0.5*(id.variables['SALT'][0,:,:,0] + id.variables['SALT'][0,:,:,-1])
id.close()
else:
print 'lon0 is only coded for 0E at this time'
#return
print 'Processing ROMS'
# Read grid variables we need
id = Dataset(roms_grid, 'r')
roms_lon_2d = id.variables['lon_rho'][:,:]
roms_lat_2d = id.variables['lat_rho'][:,:]
roms_h = id.variables['h'][:,:]
roms_zice = id.variables['zice'][:,:]
id.close()
# Read temperature and salinity
id = Dataset(roms_file, 'r')
roms_temp_3d = id.variables['temp'][0,:,:,:]
roms_salt_3d = id.variables['salt'][0,:,:,:]
id.close()
# Get a 3D array of z-coordinates; sc_r and Cs_r are unused in this script
roms_z_3d, sc_r, Cs_r = calc_z(roms_h, roms_zice, theta_s, theta_b, hc, N)
# Make sure we are in the range 0-360
if lon0 < 0:
lon0 += 360
# Interpolate to lon0
roms_temp, roms_z, roms_lat = interp_lon_roms(roms_temp_3d, roms_z_3d, roms_lat_2d, roms_lon_2d, lon0)
roms_salt, roms_z, roms_lat = interp_lon_roms(roms_salt_3d, roms_z_3d, roms_lat_2d, roms_lon_2d, lon0)
# Switch back to range -180-180
if lon0 > 180:
lon0 -= 360
print 'Processing low-res FESOM'
# Build regular elements
elements_lr = fesom_grid(fesom_mesh_path_lr)
# Read temperature and salinity
id = Dataset(fesom_file_lr, 'r')
fesom_temp_nodes_lr = id.variables['temp'][0,:]
fesom_salt_nodes_lr = id.variables['salt'][0,:]
id.close()
# Make SideElements
selements_temp_lr = fesom_sidegrid(elements_lr, fesom_temp_nodes_lr, lon0, lat_max)
selements_salt_lr = fesom_sidegrid(elements_lr, fesom_salt_nodes_lr, lon0, lat_max)
# Build an array of quadrilateral patches for the plot, and of data values
# corresponding to each SideElement
patches_lr = []
fesom_temp_lr = []
for selm in selements_temp_lr:
# Make patch
coord = transpose(vstack((selm.y, selm.z)))
patches_lr.append(Polygon(coord, True, linewidth=0.))
# Save data value
fesom_temp_lr.append(selm.var)
# Repeat for salinity
fesom_salt_lr = []
for selm in selements_salt_lr:
fesom_salt_lr.append(selm.var)
# Interpolate to regular grid so we can overlay contours
lat_reg = linspace(lat_min, lat_max, num_lat)
depth_reg = linspace(-depth_max, -depth_min, num_depth)
temp_reg_lr = zeros([num_depth, num_lat])
salt_reg_lr = zeros([num_depth, num_lat])
temp_reg_lr[:,:] = NaN
salt_reg_lr[:,:] = NaN
# For each element, check if a point on the regular grid lies
# within. If so, do barycentric interpolation to that point, at each
# depth on the regular grid.
for elm in elements_lr:
# Check if this element crosses lon0
if amin(elm.lon) < lon0 and amax(elm.lon) > lon0:
# Check if we are within the latitude bounds
if amax(elm.lat) > lat_min and amin(elm.lat) < lat_max:
# Find largest regular latitude value south of Element
tmp = nonzero(lat_reg > amin(elm.lat))[0]
if len(tmp) == 0:
# Element crosses the southern boundary
jS = 0
else:
jS = tmp[0] - 1
# Find smallest regular latitude north of Element
tmp = nonzero(lat_reg > amax(elm.lat))[0]
if len(tmp) == 0:
# Element crosses the northern boundary
jN = num_lat
else:
jN = tmp[0]
for j in range(jS+1,jN):
# There is a chance that the regular gridpoint at j
# lies within this element
lat0 = lat_reg[j]
if in_triangle(elm, lon0, lat0):
# Yes it does
# Get area of entire triangle
area = triangle_area(elm.lon, elm.lat)
# Get area of each sub-triangle formed by (lon0, lat0)
area0 = triangle_area([lon0, elm.lon[1], elm.lon[2]], [lat0, elm.lat[1], elm.lat[2]])
area1 = triangle_area([lon0, elm.lon[0], elm.lon[2]], [lat0, elm.lat[0], elm.lat[2]])
area2 = triangle_area([lon0, elm.lon[0], elm.lon[1]], [lat0, elm.lat[0], elm.lat[1]])
# Find fractional area of each
cff = [area0/area, area1/area, area2/area]
# Interpolate each depth value
for k in range(num_depth):
# Linear interpolation in the vertical for the
# value at each corner of the triangle
node_vals_temp = []
node_vals_salt = []
for n in range(3):
id1, id2, coeff1, coeff2 = elm.nodes[n].find_depth(depth_reg[k])
if any(isnan(array([id1, id2, coeff1, coeff2]))):
# No ocean data here (seafloor or ice shelf)
node_vals_temp.append(NaN)
node_vals_salt.append(NaN)
else:
node_vals_temp.append(coeff1*fesom_temp_nodes_lr[id1] + coeff2*fesom_temp_nodes_lr[id2])
node_vals_salt.append(coeff1*fesom_salt_nodes_lr[id1] + coeff2*fesom_salt_nodes_lr[id2])
if any(isnan(node_vals_temp)):
pass
else:
# Barycentric interpolation for the value at
# lon0, lat0
temp_reg_lr[k,j] = sum(array(cff)*array(node_vals_temp))
salt_reg_lr[k,j] = sum(array(cff)*array(node_vals_salt))
temp_reg_lr = ma.masked_where(isnan(temp_reg_lr), temp_reg_lr)
salt_reg_lr = ma.masked_where(isnan(salt_reg_lr), salt_reg_lr)
print 'Processing high-res FESOM'
elements_hr = fesom_grid(fesom_mesh_path_hr)
id = Dataset(fesom_file_hr, 'r')
fesom_temp_nodes_hr = id.variables['temp'][0,:]
fesom_salt_nodes_hr = id.variables['salt'][0,:]
id.close()
selements_temp_hr = fesom_sidegrid(elements_hr, fesom_temp_nodes_hr, lon0, lat_max)
selements_salt_hr = fesom_sidegrid(elements_hr, fesom_salt_nodes_hr, lon0, lat_max)
patches_hr = []
fesom_temp_hr = []
for selm in selements_temp_hr:
coord = transpose(vstack((selm.y, selm.z)))
patches_hr.append(Polygon(coord, True, linewidth=0.))
fesom_temp_hr.append(selm.var)
fesom_salt_hr = []
for selm in selements_salt_hr:
fesom_salt_hr.append(selm.var)
lat_reg = linspace(lat_min, lat_max, num_lat)
temp_reg_hr = zeros([num_depth, num_lat])
salt_reg_hr = zeros([num_depth, num_lat])
temp_reg_hr[:,:] = NaN
salt_reg_hr[:,:] = NaN
for elm in elements_hr:
if amin(elm.lon) < lon0 and amax(elm.lon) > lon0:
if amax(elm.lat) > lat_min and amin(elm.lat) < lat_max:
tmp = nonzero(lat_reg > amin(elm.lat))[0]
if len(tmp) == 0:
jS = 0
else:
jS = tmp[0] - 1
tmp = nonzero(lat_reg > amax(elm.lat))[0]
if len(tmp) == 0:
jN = num_lat
else:
jN = tmp[0]
for j in range(jS+1,jN):
lat0 = lat_reg[j]
if in_triangle(elm, lon0, lat0):
area = triangle_area(elm.lon, elm.lat)
area0 = triangle_area([lon0, elm.lon[1], elm.lon[2]], [lat0, elm.lat[1], elm.lat[2]])
area1 = triangle_area([lon0, elm.lon[0], elm.lon[2]], [lat0, elm.lat[0], elm.lat[2]])
area2 = triangle_area([lon0, elm.lon[0], elm.lon[1]], [lat0, elm.lat[0], elm.lat[1]])
cff = [area0/area, area1/area, area2/area]
for k in range(num_depth):
node_vals_temp = []
node_vals_salt = []
for n in range(3):
id1, id2, coeff1, coeff2 = elm.nodes[n].find_depth(depth_reg[k])
if any(isnan(array([id1, id2, coeff1, coeff2]))):
node_vals_temp.append(NaN)
node_vals_salt.append(NaN)
else:
node_vals_temp.append(coeff1*fesom_temp_nodes_hr[id1] + coeff2*fesom_temp_nodes_hr[id2])
node_vals_salt.append(coeff1*fesom_salt_nodes_hr[id1] + coeff2*fesom_salt_nodes_hr[id2])
if any(isnan(node_vals_temp)):
pass
else:
temp_reg_hr[k,j] = sum(array(cff)*array(node_vals_temp))
salt_reg_hr[k,j] = sum(array(cff)*array(node_vals_salt))
temp_reg_hr = ma.masked_where(isnan(temp_reg_hr), temp_reg_hr)
salt_reg_hr = ma.masked_where(isnan(salt_reg_hr), salt_reg_hr)
depth_reg = -1*depth_reg
# Set up axis labels the way we want them
lat_ticks = arange(lat_min+3, lat_max+10, 10)
lat_labels = []
for val in lat_ticks:
lat_labels.append(str(int(round(-val))) + r'$^{\circ}$S')
depth_ticks = range(depth_min+1000, 0+1000, 1000)
depth_labels = []
for val in depth_ticks:
depth_labels.append(str(int(round(-val))))
print 'Plotting'
fig = figure(figsize=(14,24))
# ECCO2
gs1 = GridSpec(1,2)
gs1.update(left=0.1, right=0.95, bottom=0.7575, top=0.94, wspace=0.08)
# Temperature
ax = subplot(gs1[0,0])
pcolor(ecco_lat, ecco_depth, ecco_temp, vmin=temp_min, vmax=temp_max, cmap='jet')
# Overlay contour
contour(ecco_lat, ecco_depth, ecco_temp, levels=[temp_contour], color='black')
title(r'Temperature ($^{\circ}$C)', fontsize=24)
ylabel('Depth (m)', fontsize=18)
xlim([lat_min, lat_max])
ylim([depth_min, depth_max])
ax.set_xticks(lat_ticks)
ax.set_xticklabels(lat_labels, fontsize=16)
ax.set_yticks(depth_ticks)
ax.set_yticklabels(depth_labels, fontsize=16)
text(-64, 1000, 'a) ECCO2 initial conditions at ' + lon_string + ', January 1992', fontsize=28)
# Salinity
ax = subplot(gs1[0,1])
pcolor(ecco_lat, ecco_depth, ecco_salt, vmin=salt_min, vmax=salt_max, cmap='jet')
contour(ecco_lat, ecco_depth, ecco_salt, levels=[salt_contour], color='black')
title('Salinity (psu)', fontsize=24)
xlim([lat_min, lat_max])
ylim([depth_min, depth_max])
ax.set_xticks(lat_ticks)
ax.set_xticklabels(lat_labels, fontsize=16)
ax.set_yticks(depth_ticks)
ax.set_yticklabels([])
# MetROMS
gs2 = GridSpec(1,2)
gs2.update(left=0.1, right=0.95, bottom=0.525, top=0.7075, wspace=0.08)
# Temperature
ax = subplot(gs2[0,0])
pcolor(roms_lat, roms_z, roms_temp, vmin=temp_min, vmax=temp_max, cmap='jet')
contour(roms_lat, roms_z, roms_temp, levels=[temp_contour], color='black')
ylabel('Depth (m)', fontsize=18)
xlim([lat_min, lat_max])
ylim([depth_min, depth_max])
ax.set_xticks(lat_ticks)
ax.set_xticklabels(lat_labels, fontsize=16)
ax.set_yticks(depth_ticks)
ax.set_yticklabels(depth_labels, fontsize=16)
text(-49, 300, 'b) MetROMS, January 2016', fontsize=28)
# Salinity
ax = subplot(gs2[0,1])
pcolor(roms_lat, roms_z, roms_salt, vmin=salt_min, vmax=salt_max, cmap='jet')
contour(roms_lat, roms_z, roms_salt, levels=[salt_contour], color='black')
xlim([lat_min, lat_max])
ylim([depth_min, depth_max])
ax.set_xticks(lat_ticks)
ax.set_xticklabels(lat_labels, fontsize=16)
ax.set_yticks(depth_ticks)
ax.set_yticklabels([])
# FESOM low-res
gs3 = GridSpec(1,2)
gs3.update(left=0.1, right=0.95, bottom=0.2925, top=0.475, wspace=0.08)
# Temperature
ax = subplot(gs3[0,0])
img = PatchCollection(patches_lr, cmap='jet')
img.set_array(array(fesom_temp_lr))
img.set_edgecolor('face')
img.set_clim(vmin=temp_min, vmax=temp_max)
ax.add_collection(img)
# Overlay contour on regular grid
contour(lat_reg, depth_reg, temp_reg_lr, levels=[temp_contour], color='black')
ylabel('Depth (m)', fontsize=18)
xlim([lat_min, lat_max])
ylim([depth_min, depth_max])
ax.set_xticks(lat_ticks)
ax.set_xticklabels(lat_labels, fontsize=16)
ax.set_yticks(depth_ticks)
ax.set_yticklabels(depth_labels, fontsize=16)
text(-53, 300, 'c) FESOM (low-res), January 2016', fontsize=28)
# Salinity
ax = subplot(gs3[0,1])
img = PatchCollection(patches_lr, cmap='jet')
img.set_array(array(fesom_salt_lr))
img.set_edgecolor('face')
img.set_clim(vmin=salt_min, vmax=salt_max)
ax.add_collection(img)
contour(lat_reg, depth_reg, salt_reg_lr, levels=[salt_contour], color='black')
xlim([lat_min, lat_max])
ylim([depth_min, depth_max])
ax.set_xticks(lat_ticks)
ax.set_xticklabels(lat_labels, fontsize=16)
ax.set_yticks(depth_ticks)
ax.set_yticklabels([])
# FESOM high-res
gs4 = GridSpec(1,2)
gs4.update(left=0.1, right=0.95, bottom=0.06, top=0.2425, wspace=0.08)
# Temperature
ax = subplot(gs4[0,0])
img = PatchCollection(patches_hr, cmap='jet')
img.set_array(array(fesom_temp_hr))
img.set_edgecolor('face')
img.set_clim(vmin=temp_min, vmax=temp_max)
ax.add_collection(img)
contour(lat_reg, depth_reg, temp_reg_hr, levels=[temp_contour], color='black')
ylabel('Depth (m)', fontsize=18)
xlim([lat_min, lat_max])
ylim([depth_min, depth_max])
ax.set_xticks(lat_ticks)
ax.set_xticklabels(lat_labels, fontsize=16)
ax.set_yticks(depth_ticks)
ax.set_yticklabels(depth_labels, fontsize=16)
text(-53, 300, 'd) FESOM (high-res), January 2016', fontsize=28)
# Add a colorbar for temperature
cbaxes = fig.add_axes([0.17, 0.015, 0.3, 0.015])
cbar = colorbar(img, orientation='horizontal', cax=cbaxes, extend='both', ticks=arange(temp_min, temp_max+2, 2))
cbar.ax.tick_params(labelsize=16)
# Salinity
ax = subplot(gs4[0,1])
img = PatchCollection(patches_hr, cmap='jet')
img.set_array(array(fesom_salt_hr))
img.set_edgecolor('face')
img.set_clim(vmin=salt_min, vmax=salt_max)
ax.add_collection(img)
contour(lat_reg, depth_reg, salt_reg_hr, levels=[salt_contour], color='black')
xlim([lat_min, lat_max])
ylim([depth_min, depth_max])
ax.set_xticks(lat_ticks)
ax.set_xticklabels(lat_labels, fontsize=16)
ax.set_yticks(depth_ticks)
ax.set_yticklabels([])
# Add a colorbar for salinity
cbaxes = fig.add_axes([0.6, 0.015, 0.3, 0.02])
cbar = colorbar(img, orientation='horizontal', cax=cbaxes, extend='both', ticks=arange(salt_min+0.1, salt_max+0.1, 0.2))
cbar.ax.tick_params(labelsize=16)
fig.show()
fig.savefig('ts_drift.png')
# Command-line interface
if __name__ == "__main__":
roms_grid = raw_input("Path to ROMS grid file: ")
roms_file = raw_input("Path to ROMS file containing monthly averaged temperature and salinity for January 2016: ")
fesom_mesh_path_lr = raw_input("Path to FESOM low-res mesh directory: ")
fesom_file_lr = raw_input("Path to FESOM low-res file containing monthly averaged temperature and salinity for January 2016: ")
fesom_mesh_path_hr = raw_input("Path to FESOM high-res mesh directory: ")
fesom_file_hr = raw_input("Path to FESOM high-res file containing monthly averaged temperature and salinity for January 2016: ")
mip_drift_slices(roms_grid, roms_file, fesom_mesh_path_lr, fesom_file_lr, fesom_mesh_path_hr, fesom_file_hr)