forked from knaughten/roms_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
i_slice.py
181 lines (160 loc) · 6.92 KB
/
i_slice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from netCDF4 import Dataset
from numpy import *
from matplotlib.pyplot import *
from calc_z import *
# Plot the given variable for a single i-slice (depth versus y) with no
# time-averaging, spatial averaging, interpolation, or velocity rotation.
# This helps to show where there are advective errors.
# Input:
# file_path = path to ROMS history file (NOT averages)
# var_name = variable name to plot
# tstep = timestep to plot (starting at 1)
# i_val = i-index to plot (starting at 1)
# depth_min = deepest depth to plot (negative, in metres)
# colour_bounds = optional bounds on colour scale, stored as an array of size
# 2 with the lower bound first. If colour_bounds = None, then
# determine colour scale bounds automatically.
# save = optional boolean flag; if True, the figure will be saved with file name
# fig_name, if False, the figure will display on the screen
# fig_name = optional string containing filename for figure, if save=True
def i_slice (file_path, var_name, tstep, i_val, depth_min, colour_bounds=None, save=False, fig_name=None):
# Grid parameters
theta_s = 7.0
theta_b = 2.0
hc = 250
N = 31
# Read data and grid variables
id = Dataset(file_path, 'r')
data = id.variables[var_name][tstep-1,:,:-15,i_val-1]
h = id.variables['h'][:-15,:]
zice = id.variables['zice'][:-15,:]
# Sea surface height is time-dependent
zeta = id.variables['zeta'][tstep-1,:-15,:]
lon_2d = id.variables['lon_rho'][:-15,:]
lat_2d = id.variables['lat_rho'][:-15,:]
id.close()
# Get a 3D array of z-coordinates; sc_r and Cs_r are unused in this script
z_3d, sc_r, Cs_r = calc_z(h, zice, theta_s, theta_b, hc, N, zeta)
# Select depth and latitude at the given i-index
z = z_3d[:,:,i_val-1]
lat = tile(lat_2d[:,i_val-1], (N,1))
# Determine colour bounds
if colour_bounds is not None:
# Specified by user
scale_min = colour_bounds[0]
scale_max = colour_bounds[1]
if scale_min == -scale_max:
# Centered on zero; use a red-yellow-blue colour scale
colour_map = 'RdYlBu_r'
else:
# Use a rainbow colour scale
colour_map = 'jet'
else:
# Determine automatically
scale_min = amin(data)
scale_max = amax(data)
colour_map = 'jet'
# Plot (pcolor not contour to show what each individual cell is doing)
fig = figure(figsize=(18,6))
pcolor(lat, z, data, vmin=scale_min, vmax=scale_max, cmap=colour_map)
colorbar()
title(var_name + ' at i=' + str(i_val))
xlabel('Latitude')
ylabel('Depth (m)')
# Determine bounds on latitude
data_sum = sum(data, axis=0)
edges = ma.flatnotmasked_edges(data_sum)
j_min = edges[0]
j_max = edges[1]
if j_min == 0:
# There are ocean points right to the southern boundary
# Don't do anything special
lat_min = min(lat[:,j_min])
else:
# There is land everywhere at the southern boundary
# Show the last 2 degrees of this land mask
lat_min = min(lat[:,j_min]) - 2
if j_max == size(data_sum) - 1:
# There are ocean points right to the northern boundary
# Don't do anything special
lat_max = max(lat[:,j_max])
else:
# There is land everywhere at the northern boundary
# Show the first 2 degrees of this land mask
lat_max = max(lat[:,j_max]) + 2
lat_max = -65
xlim([lat_min, lat_max])
ylim([depth_min, 0])
# Finished
if save:
fig.savefig(fig_name)
else:
fig.show()
# Command-line interface
if __name__ == "__main__":
file_path = raw_input("Path to ocean history file: ")
var_name = raw_input("Variable name: ")
tstep = int(raw_input("Timestep number (starting at 1): "))
i_val = int(raw_input("i-index to plot (1 to 1443): "))
depth_min = -1*float(raw_input("Deepest depth to plot (positive, metres): "))
# Get colour bounds if necessary
colour_bounds = None
get_bounds = raw_input("Set bounds on colour scale (y/n)? ")
if get_bounds == 'y':
lower_bound = float(raw_input("Lower bound: "))
upper_bound = float(raw_input("Upper bound: "))
colour_bounds = [lower_bound, upper_bound]
action = raw_input("Save figure (s) or display in window (d)? ")
if action == 's':
save = True
fig_name = raw_input("File name for figure: ")
elif action == 'd':
save = False
fig_name = None
# Make the plot
i_slice(file_path, var_name, tstep, i_val, depth_min, colour_bounds, save, fig_name)
# Repeat until the user wants to exit
while True:
repeat = raw_input("Make another plot (y/n)? ")
if repeat == 'y':
while True:
# Ask for changes to the input parameters; repeat until the user
# is finished
changes = raw_input("Enter a parameter to change: (1) file path, (2) variable name, (3) timestep number, (4) i-index, (5) deepest depth, (6) colour bounds, (7) save/display; or enter to continue: ")
if len(changes) == 0:
# No more changes to parameters
break
else:
if int(changes) == 1:
# New file path
file_path = raw_input("Path to ocean history file: ")
elif int(changes) == 2:
# New variable name
var_name = raw_input("Variable name: ")
elif int(changes) == 3:
# New timestep
tstep = int(raw_input("Timestep number (starting at 1): "))
elif int(changes) == 4:
# New i-index
i_val = int(raw_input("i-index to plot (1 to 1443): "))
elif int(changes) == 5:
# New depth bound
depth_min = -1*float(raw_input("Deepest depth to plot (positive, metres): "))
elif int(changes) == 6:
# Get colour bounds if necessary
colour_bounds = None
get_bounds = raw_input("Set bounds on colour scale (y/n)? ")
if get_bounds == 'y':
lower_bound = float(raw_input("Lower bound: "))
upper_bound = float(raw_input("Upper bound: "))
colour_bounds = [lower_bound, upper_bound]
elif int(changes) == 7:
# Change from display to save, or vice versa
save = not save
if save:
# Get file name for figure
fig_name = raw_input("File name for figure: ")
# Make the plot
i_slice(file_path, var_name, tstep, i_val, depth_min, colour_bounds, save, fig_name)
else:
break