forked from knaughten/roms_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbugs_mld_polynya.py
99 lines (89 loc) · 3.49 KB
/
bugs_mld_polynya.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from netCDF4 import Dataset, num2date
from numpy import *
from matplotlib.pyplot import *
def bugs_mld_polynya ():
# Files and timesteps to read
file_ocn = '/short/m68/kaa561/metroms_iceshelf/tmproms/run/bug_chapter/no_restoring/ocean_avg_0012.nc'
tstep_ocn = 2
file_ice = '/short/m68/kaa561/metroms_iceshelf/tmproms/run/bug_chapter/no_restoring/cice/rundir/history/iceh.1994-09-26.nc'
tstep_ice = 1
# Degrees to radians conversion factor
deg2rad = pi/180
# Month names for titles
month_names = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']
# Maximum latitude to plot
nbdry = -52+90
# Set up figure
fig = figure(figsize=(16,8))
gs = GridSpec(1,2)
gs.update(left=0.1, right=0.9, bottom=0.05, top=0.9, wspace=0.05)
# Read mixed layer depth (actually surface boundary layer depth)
# and ROMS grid
id = Dataset(file_ocn, 'r')
lon = id.variables['lon_rho'][:,:-1]
lat = id.variables['lat_rho'][:,:-1]
zice = id.variables['zice'][:,:-1]
hsbl = id.variables['Hsbl'][tstep_ocn-1,:,:-1]
# Also read time axis and convert to Date objects
time_id = id.variables['ocean_time']
time = num2date(time_id[tstep_ocn-1], units=time_id.units, calendar=time_id.calendar.lower())
id.close()
# Mask out the ice shelves and change the sign
mld = ma.masked_where(zice!=0, -hsbl)
# Polar coordinate transformation
x = -(lat+90)*cos(lon*deg2rad+pi/2)
y = (lat+90)*sin(lon*deg2rad+pi/2)
# Get the date for the title
date_string = str(time.day) + ' ' + month_names[time.month-1] + ' ' + str(time.year)
# Plot
ax = subplot(gs[0,0], aspect='equal')
lev = linspace(0, amax(mld), num=50)
contourf(x, y, mld, lev, cmap='jet')
xlim([-nbdry, nbdry])
ylim([-nbdry, nbdry])
ax.set_xticks([])
ax.set_yticks([])
title('a) Surface boundary layer depth (m)', fontsize=24)
# Colourbar
cbaxes = fig.add_axes([0.03, 0.3, 0.02, 0.4])
cbar = colorbar(cax=cbaxes, ticks=arange(0,2000+500,500))
cbar.ax.tick_params(labelsize=16)
# Read sea ice concentration and CICE grid
id = Dataset(file_ice, 'r')
lon_tmp = id.variables['TLON'][:,:]
lat_tmp = id.variables['TLAT'][:,:]
aice_tmp = id.variables['aice'][tstep_ice-1,:,:]
id.close()
# Wrap the periodic boundray by 1 cell
lon = ma.empty([size(lon_tmp,0), size(lon_tmp,1)+1])
lat = ma.empty([size(lat_tmp,0), size(lat_tmp,1)+1])
aice = ma.empty([size(aice_tmp,0), size(aice_tmp,1)+1])
lon[:,:-1] = lon_tmp
lon[:,-1] = lon_tmp[:,0]
lat[:,:-1] = lat_tmp
lat[:,-1] = lat_tmp[:,0]
aice[:,:-1] = aice_tmp
aice[:,-1] = aice_tmp[:,0]
# Convert to spherical coordinates
x = -(lat+90)*cos(lon*deg2rad+pi/2)
y = (lat+90)*sin(lon*deg2rad+pi/2)
# Plot
ax = subplot(gs[0,1], aspect='equal')
lev = linspace(0, 1, num=50)
contourf(x, y, aice, lev, cmap='jet')
xlim([-nbdry, nbdry])
ylim([-nbdry, nbdry])
ax.set_xticks([])
ax.set_yticks([])
title('b) Sea ice concentration', fontsize=24)
# Colourbar
cbaxes = fig.add_axes([0.92, 0.3, 0.02, 0.4])
cbar = colorbar(cax=cbaxes, ticks=arange(0,1+0.25,0.25))
cbar.ax.tick_params(labelsize=16)
# Label the timestep
text(0.5, 0.94, date_string, ha='center', transform=fig.transFigure, fontsize=28)
fig.show()
fig.savefig('bugs_mld_polynya.png')
# Command-line interface
if __name__ == "__main__":
bugs_mld_polynya()