-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqa4rocm_app.py
182 lines (151 loc) · 7.51 KB
/
qa4rocm_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Usage: "streamlit run qa4rocm_app.py"
# Question Examples
"""
What is MIGraphX?
How to install MIGraphX?
"""
import os
# Enalbe 780M with ROCm
os.environ['HSA_OVERRIDE_GFX_VERSION'] = '11.0.0'
import time
import pathlib
import shutil
import streamlit as st
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext, StorageContext, Settings
from llama_index.core.node_parser import SentenceSplitter
from llama_index.embeddings.ollama import OllamaEmbedding
from llama_index.llms.ollama import Ollama
from llama_index.vector_stores.chroma import ChromaVectorStore
import chromadb
#from chromadb.config import DEFAULT_TENANT, DEFAULT_DATABASE, Settings
st.set_page_config(page_title="Your Local Chatbot, assist to learn ROCm", page_icon="🦙", layout="centered", initial_sidebar_state="auto", menu_items=None)
#st.info("Powered by ROCm & LlamaIndex 💬🦙")
#st.info("Check out the full tutorial to build this app in our [blog post](https://blog.streamlit.io/build-a-chatbot-with-custom-data-sources-powered-by-llamaindex/)", icon="📃")
st.title("Learn ROCm with Chatbot \n powered by AMD!")
st.image("https://www.amd.com/content/dam/amd/en/images/logos/products/amd-rocm-lockup-banner.jpg")
# Create Service Context
def create_ServiceContext(llm_name, llm_temperature):
# Set embedding model
# Please download it ahead running this lab by "ollama pull nomic-embed-text"
Settings.embed_model = OllamaEmbedding(model_name="nomic-embed-text")
# Set ollama model
Settings.llm = Ollama(model=llm_name,
request_timeout=160.0,
temperature=llm_temperature)
if "service_context" not in st.session_state.keys():
st.session_state.service_context = ServiceContext.from_defaults(llm=Settings.llm,
embed_model=Settings.embed_model,
system_prompt="You are an expert on AMD ROCm and your job is to answer technical questions. Assume that all questions are related to the documentation of ROCm. Keep your answers technical and based on facts – do not hallucinate features.")
if "messages" not in st.session_state.keys(): # Initialize the chat messages history
st.session_state.messages = [
{"role": "assistant", "content": "Ask me about AMD ROCm!"}
]
return
def buid_index(service_context, dbpath):
# initialize client
st.session_state.db = chromadb.PersistentClient(
path=dbpath,
#settings=Settings(allow_reset="True"),
#tenant=DEFAULT_TENANT,
#database=DEFAULT_DATABASE,
)
# get collection
chroma_collection = st.session_state.db.get_or_create_collection(st.session_state["db_collection"])
# assign chroma as the vector_store to the context
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
# Load data
docs = SimpleDirectoryReader(input_dir=save_folder).load_data()
# Build vector index per-document
index = VectorStoreIndex.from_documents(
docs,
show_progress=True,
service_context=service_context,
storage_context=storage_context,
transformations=[SentenceSplitter(chunk_size=1024, chunk_overlap=200)],
)
return index
def load_index(service_context, dbpath):
# initialize client
st.session_state.db = chromadb.PersistentClient(
path=dbpath,
#settings=Settings(allow_reset="True"),
#tenant=DEFAULT_TENANT,
#database=DEFAULT_DATABASE,
)
# get collection
#chroma_collection = st.session_state.db.get_or_create_collection(st.session_state["db_collection"])
chroma_collection = st.session_state.db.get_collection(st.session_state["db_collection"])
# assign chroma as the vector_store to the context
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
# load your index from stored vectors
index = VectorStoreIndex.from_vector_store(
vector_store,
service_context=service_context,
storage_context=storage_context
)
return index
if "llm_name" not in st.session_state:
st.session_state.llm_name = "llama3"
if "llm_temperature" not in st.session_state:
st.session_state.llm_temperature = "0.6"
# Setting in sidebar
with st.form(key='Model Settings'):
#st.sidebar.header("Model")
st.session_state.llm_name=st.sidebar.selectbox("", ("llama3", "qwen2"))
st.session_state.llm_temperature = st.sidebar.slider('Temperature', 0.0, 1.0, 0.6, step=0.01,)
#submit_button = st.form_submit_button(label='Submit', on_click=create_ServiceContext)
#submit_button = st.form_submit_button(label='Submit', on_click=st.rerun)
if "config_init" not in st.session_state:
st.session_state["config_init"] = True
st.session_state["reindex"] = False
st.session_state["db_collection"] = "db_collection"
# Add an "upload file" button
st.sidebar.header("Add RAG File(pdf,txt,md)")
save_folder = "./data"
if not os.path.exists(save_folder):
pathlib.Path(save_folder).mkdir(parents=True, exist_ok=True)
uploaded_file = st.sidebar.file_uploader(label="")
# Check if a file has been uploaded
if uploaded_file is not None:
save_path = pathlib.Path(save_folder, uploaded_file.name)
with open(save_path, mode="wb") as w:
w.write(uploaded_file.getvalue())
st.session_state['reindex'] = True
# ReIndex by cache.clear
#st.sidebar.header("Clear Cache")
if st.sidebar.button("ReIndex"):
#shutil.rmtree('./chroma_db', ignore_errors=True)
st.session_state['reindex'] = True
st.cache_resource.clear()
st.sidebar.markdown("NOTE: More time for rebuilding the Index!")
def clear_chat_history():
st.session_state.messages = [{"role": "assistant", "content": "Ask me about ROCm?"}]
st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
@st.cache_resource(show_spinner=False)
def load_data():
with st.spinner(text="Loading and indexing the ROCm docs – hang tight! This should take 2-3 minutes."):
service_context = st.session_state.service_context
if ((not os.path.exists("./chroma_db/ROCm_db")) or (st.session_state['reindex'] == True)):
index = buid_index(service_context, dbpath="./chroma_db/ROCm_db")
st.session_state['rebuild_index'] = False
else:
index = load_index(service_context=service_context, dbpath="./chroma_db/ROCm_db")
return index
st.write("Service Model: ", st.session_state.llm_name)
create_ServiceContext(st.session_state.llm_name, st.session_state.llm_temperature)
index = load_data()
if "chat_engine" not in st.session_state.keys(): # Initialize the chat engine
st.session_state.chat_engine = index.as_query_engine(chat_mode="condense_question", verbose=True, streaming=True)
if prompt := st.chat_input("Your question"): # Prompt for user input and save to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
for message in st.session_state.messages: # Display the prior chat messages
with st.chat_message(message["role"]):
st.write(message["content"])
# If last message is not from assistant, generate a new response
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = st.session_state.chat_engine.query(prompt)
st.write_stream(response.response_gen)