forked from CFMIP/COSPv1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcosp.F90
604 lines (562 loc) · 31.2 KB
/
cosp.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
! (c) British Crown Copyright 2008, the Met Office.
! All rights reserved.
!
! Redistribution and use in source and binary forms, with or without modification, are permitted
! provided that the following conditions are met:
!
! * Redistributions of source code must retain the above copyright notice, this list
! of conditions and the following disclaimer.
! * Redistributions in binary form must reproduce the above copyright notice, this list
! of conditions and the following disclaimer in the documentation and/or other materials
! provided with the distribution.
! * Neither the name of the Met Office nor the names of its contributors may be used
! to endorse or promote products derived from this software without specific prior written
! permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
! IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
! FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
! CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
! DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
! IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
! OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "cosp_defs.h"
MODULE MOD_COSP
USE MOD_COSP_TYPES
USE MOD_COSP_SIMULATOR
USE MOD_COSP_MODIS_SIMULATOR
IMPLICIT NONE
CONTAINS
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
!--------------------- SUBROUTINE COSP ---------------------------
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#ifdef RTTOV
SUBROUTINE COSP(overlap,Ncolumns,cfg,vgrid,gbx,sgx,sgradar,sglidar,isccp,misr,modis,rttov,stradar,stlidar)
#else
SUBROUTINE COSP(overlap,Ncolumns,cfg,vgrid,gbx,sgx,sgradar,sglidar,isccp,misr,modis,stradar,stlidar)
#endif
! Arguments
integer,intent(in) :: overlap ! overlap type in SCOPS: 1=max, 2=rand, 3=max/rand
integer,intent(in) :: Ncolumns
type(cosp_config),intent(in) :: cfg ! Configuration options
type(cosp_vgrid),intent(in) :: vgrid ! Information on vertical grid of stats
type(cosp_gridbox),intent(inout) :: gbx
type(cosp_subgrid),intent(inout) :: sgx ! Subgrid info
type(cosp_sgradar),intent(inout) :: sgradar ! Output from radar simulator
type(cosp_sglidar),intent(inout) :: sglidar ! Output from lidar simulator
type(cosp_isccp),intent(inout) :: isccp ! Output from ISCCP simulator
type(cosp_misr),intent(inout) :: misr ! Output from MISR simulator
type(cosp_modis),intent(inout) :: modis ! Output from MODIS simulator
#ifdef RTTOV
type(cosp_rttov),intent(inout) :: rttov ! Output from RTTOV
#endif
type(cosp_radarstats),intent(inout) :: stradar ! Summary statistics from radar simulator
type(cosp_lidarstats),intent(inout) :: stlidar ! Summary statistics from lidar simulator
! Local variables
integer :: Npoints ! Number of gridpoints
integer :: Nlevels ! Number of levels
integer :: Nhydro ! Number of hydrometeors
integer :: Niter ! Number of calls to cosp_simulator
integer :: i_first,i_last ! First and last gridbox to be processed in each iteration
integer :: i,Ni
integer,dimension(2) :: ix,iy
logical :: reff_zero
real :: maxp,minp
integer,dimension(:),allocatable :: & ! Dimensions nPoints
seed ! It is recommended that the seed is set to a different value for each model
! gridbox it is called on, as it is possible that the choice of the same
! seed value every time may introduce some statistical bias in the results,
! particularly for low values of NCOL.
! Types used in one iteration
type(cosp_gridbox) :: gbx_it
type(cosp_subgrid) :: sgx_it
type(cosp_vgrid) :: vgrid_it
type(cosp_sgradar) :: sgradar_it
type(cosp_sglidar) :: sglidar_it
type(cosp_isccp) :: isccp_it
type(cosp_modis) :: modis_it
type(cosp_misr) :: misr_it
#ifdef RTTOV
type(cosp_rttov) :: rttov_it
#endif
type(cosp_radarstats) :: stradar_it
type(cosp_lidarstats) :: stlidar_it
!++++++++++ Dimensions ++++++++++++
Npoints = gbx%Npoints
Nlevels = gbx%Nlevels
Nhydro = gbx%Nhydro
!++++++++++ Depth of model layers ++++++++++++
do i=1,Nlevels-1
gbx%dlev(:,i) = gbx%zlev_half(:,i+1) - gbx%zlev_half(:,i)
enddo
gbx%dlev(:,Nlevels) = 2.0*(gbx%zlev(:,Nlevels) - gbx%zlev_half(:,Nlevels))
!++++++++++ Apply sanity checks to inputs ++++++++++
call cosp_check_input('longitude',gbx%longitude,min_val=0.0,max_val=360.0)
call cosp_check_input('latitude',gbx%latitude,min_val=-90.0,max_val=90.0)
call cosp_check_input('dlev',gbx%dlev,min_val=0.0)
call cosp_check_input('p',gbx%p,min_val=0.0)
call cosp_check_input('ph',gbx%ph,min_val=0.0)
call cosp_check_input('T',gbx%T,min_val=0.0)
call cosp_check_input('q',gbx%q,min_val=0.0)
call cosp_check_input('sh',gbx%sh,min_val=0.0)
call cosp_check_input('dtau_s',gbx%dtau_s,min_val=0.0)
call cosp_check_input('dtau_c',gbx%dtau_c,min_val=0.0)
call cosp_check_input('dem_s',gbx%dem_s,min_val=0.0,max_val=1.0)
call cosp_check_input('dem_c',gbx%dem_c,min_val=0.0,max_val=1.0)
! Point information (Npoints)
call cosp_check_input('land',gbx%land,min_val=0.0,max_val=1.0)
call cosp_check_input('psfc',gbx%psfc,min_val=0.0)
call cosp_check_input('sunlit',gbx%sunlit,min_val=0.0,max_val=1.0)
call cosp_check_input('skt',gbx%skt,min_val=0.0)
! TOTAL and CONV cloud fraction for SCOPS
call cosp_check_input('tca',gbx%tca,min_val=0.0,max_val=1.0)
call cosp_check_input('cca',gbx%cca,min_val=0.0,max_val=1.0)
! Precipitation fluxes on model levels
call cosp_check_input('rain_ls',gbx%rain_ls,min_val=0.0)
call cosp_check_input('rain_cv',gbx%rain_cv,min_val=0.0)
call cosp_check_input('snow_ls',gbx%snow_ls,min_val=0.0)
call cosp_check_input('snow_cv',gbx%snow_cv,min_val=0.0)
call cosp_check_input('grpl_ls',gbx%grpl_ls,min_val=0.0)
! Hydrometeors concentration and distribution parameters
call cosp_check_input('mr_hydro',gbx%mr_hydro,min_val=0.0)
! Effective radius [m]. (Npoints,Nlevels,Nhydro)
call cosp_check_input('Reff',gbx%Reff,min_val=0.0)
reff_zero=.true.
if (any(gbx%Reff > 1.e-8)) then
reff_zero=.false.
! reff_zero == .false.
! and gbx%use_reff == .true. Reff use in radar and lidar
! and reff_zero == .false. Reff use in lidar and set to 0 for radar
endif
if ((.not. gbx%use_reff) .and. (reff_zero)) then ! No Reff in radar. Default in lidar
gbx%Reff = DEFAULT_LIDAR_REFF
print *, '---------- COSP WARNING ------------'
print *, ''
print *, 'Using default Reff in lidar simulations'
print *, ''
print *, '----------------------------------'
endif
! Aerosols concentration and distribution parameters
call cosp_check_input('conc_aero',gbx%conc_aero,min_val=0.0)
! Checks for CRM mode
if (Ncolumns == 1) then
if (gbx%use_precipitation_fluxes) then
print *, '---------- COSP ERROR ------------'
print *, ''
print *, 'Use of precipitation fluxes not supported in CRM mode (Ncolumns=1)'
print *, ''
print *, '----------------------------------'
stop
endif
if ((maxval(gbx%dtau_c) > 0.0).or.(maxval(gbx%dem_c) > 0.0)) then
print *, '---------- COSP ERROR ------------'
print *, ''
print *, ' dtau_c > 0.0 or dem_c > 0.0. In CRM mode (Ncolumns=1), '
print *, ' the optical depth (emmisivity) of all clouds must be '
print *, ' passed through dtau_s (dem_s)'
print *, ''
print *, '----------------------------------'
stop
endif
endif
! We base the seed in the decimal part of the surface pressure.
allocate(seed(Npoints))
seed = int(gbx%psfc) ! This is to avoid division by zero when Npoints = 1
! Roj Oct/2008 ... Note: seed value of 0 caused me some problems + I want to
! randomize for each call to COSP even when Npoints ==1
minp = minval(gbx%psfc)
maxp = maxval(gbx%psfc)
if (Npoints .gt. 1) seed=int((gbx%psfc-minp)/(maxp-minp)*100000) + 1
! Below it's how it was done in the original implementation of the ISCCP simulator.
! The one above is better for offline data, when you may have packed data
! that subsamples the decimal fraction of the surface pressure.
! if (Npoints .gt. 1) seed=(gbx%psfc-int(gbx%psfc))*1000000
if (gbx%Npoints_it >= gbx%Npoints) then ! One iteration gbx%Npoints
#ifdef RTTOV
call cosp_iter(overlap,seed,cfg,vgrid,gbx,sgx,sgradar,sglidar,isccp,misr,modis,rttov,stradar,stlidar)
#else
call cosp_iter(overlap,seed,cfg,vgrid,gbx,sgx,sgradar,sglidar,isccp,misr,modis,stradar,stlidar)
#endif
else ! Several iterations to save memory
Niter = gbx%Npoints/gbx%Npoints_it ! Integer division
if (Niter*gbx%Npoints_it < gbx%Npoints) Niter = Niter + 1
do i=1,Niter
i_first = (i-1)*gbx%Npoints_it + 1
i_last = i_first + gbx%Npoints_it - 1
i_last = min(i_last,gbx%Npoints)
Ni = i_last - i_first + 1
if (i == 1) then
! Allocate types for all but last iteration
call construct_cosp_gridbox(gbx%time,gbx%time_bnds,gbx%radar_freq,gbx%surface_radar,gbx%use_mie_tables, &
gbx%use_gas_abs,gbx%do_ray,gbx%melt_lay,gbx%k2,Ni,Nlevels, &
Ncolumns,N_HYDRO,gbx%Nprmts_max_hydro, &
gbx%Naero,gbx%Nprmts_max_aero,Ni,gbx%lidar_ice_type,gbx%lidar_wavelength,gbx%surface_lidar,gbx%isccp_top_height, &
gbx%isccp_top_height_direction,gbx%isccp_overlap,gbx%isccp_emsfc_lw, &
gbx%use_precipitation_fluxes,gbx%use_reff, &
gbx%plat,gbx%sat,gbx%inst,gbx%nchan,gbx%ZenAng, &
gbx%Ichan(1:gbx%nchan),gbx%surfem(1:gbx%nchan), &
gbx%co2,gbx%ch4,gbx%n2o,gbx%co, &
gbx_it)
call construct_cosp_vgrid(gbx_it,vgrid%Nlvgrid,vgrid%use_vgrid,vgrid%csat_vgrid,vgrid_it)
call construct_cosp_subgrid(Ni, Ncolumns, Nlevels, sgx_it)
call construct_cosp_sgradar(cfg,Ni,Ncolumns,Nlevels,N_HYDRO,sgradar_it)
call construct_cosp_sglidar(cfg,Ni,Ncolumns,Nlevels,N_HYDRO,PARASOL_NREFL,sglidar_it)
call construct_cosp_isccp(cfg,Ni,Ncolumns,Nlevels,isccp_it)
call construct_cosp_modis(cfg, Ni, modis_it)
call construct_cosp_misr(cfg,Ni,misr_it)
#ifdef RTTOV
call construct_cosp_rttov(Ni,gbx%nchan,rttov_it)
#endif
call construct_cosp_radarstats(cfg,Ni,Ncolumns,vgrid%Nlvgrid,N_HYDRO,stradar_it)
call construct_cosp_lidarstats(cfg,Ni,Ncolumns,vgrid%Nlvgrid,N_HYDRO,PARASOL_NREFL,stlidar_it)
elseif (i == Niter) then ! last iteration
call free_cosp_gridbox(gbx_it,.true.)
call free_cosp_subgrid(sgx_it)
call free_cosp_vgrid(vgrid_it)
call free_cosp_sgradar(sgradar_it)
call free_cosp_sglidar(sglidar_it)
call free_cosp_isccp(isccp_it)
call free_cosp_modis(modis_it)
call free_cosp_misr(misr_it)
#ifdef RTTOV
call free_cosp_rttov(rttov_it)
#endif
call free_cosp_radarstats(stradar_it)
call free_cosp_lidarstats(stlidar_it)
! Allocate types for iterations
call construct_cosp_gridbox(gbx%time,gbx%time_bnds,gbx%radar_freq,gbx%surface_radar,gbx%use_mie_tables, &
gbx%use_gas_abs,gbx%do_ray,gbx%melt_lay,gbx%k2,Ni,Nlevels, &
Ncolumns,N_HYDRO,gbx%Nprmts_max_hydro, &
gbx%Naero,gbx%Nprmts_max_aero,Ni,gbx%lidar_ice_type,gbx%lidar_wavelength,gbx%surface_lidar,gbx%isccp_top_height, &
gbx%isccp_top_height_direction,gbx%isccp_overlap,gbx%isccp_emsfc_lw, &
gbx%use_precipitation_fluxes,gbx%use_reff, &
gbx%plat,gbx%sat,gbx%inst,gbx%nchan,gbx%ZenAng, &
gbx%Ichan(1:gbx%nchan),gbx%surfem(1:gbx%nchan), &
gbx%co2,gbx%ch4,gbx%n2o,gbx%co, &
gbx_it)
! --- Copy arrays without Npoints as dimension ---
gbx_it%dist_prmts_hydro = gbx%dist_prmts_hydro
gbx_it%dist_type_aero = gbx_it%dist_type_aero
call construct_cosp_vgrid(gbx_it,vgrid%Nlvgrid,vgrid%use_vgrid,vgrid%csat_vgrid,vgrid_it)
call construct_cosp_subgrid(Ni, Ncolumns, Nlevels, sgx_it)
call construct_cosp_sgradar(cfg,Ni,Ncolumns,Nlevels,N_HYDRO,sgradar_it)
call construct_cosp_sglidar(cfg,Ni,Ncolumns,Nlevels,N_HYDRO,PARASOL_NREFL,sglidar_it)
call construct_cosp_isccp(cfg,Ni,Ncolumns,Nlevels,isccp_it)
call construct_cosp_modis(cfg,Ni, modis_it)
call construct_cosp_misr(cfg,Ni,misr_it)
#ifdef RTTOV
call construct_cosp_rttov(Ni,gbx%nchan,rttov_it)
#endif
call construct_cosp_radarstats(cfg,Ni,Ncolumns,vgrid%Nlvgrid,N_HYDRO,stradar_it)
call construct_cosp_lidarstats(cfg,Ni,Ncolumns,vgrid%Nlvgrid,N_HYDRO,PARASOL_NREFL,stlidar_it)
endif
! --- Copy sections of arrays with Npoints as dimension ---
ix=(/i_first,i_last/)
iy=(/1,Ni/)
call cosp_gridbox_cpsection(ix,iy,gbx,gbx_it)
! These serve as initialisation of *_it types
call cosp_subgrid_cpsection(ix,iy,sgx,sgx_it)
if (cfg%Lradar_sim) call cosp_sgradar_cpsection(ix,iy,sgradar,sgradar_it)
if (cfg%Llidar_sim) call cosp_sglidar_cpsection(ix,iy,sglidar,sglidar_it)
if (cfg%Lisccp_sim) call cosp_isccp_cpsection(ix,iy,isccp,isccp_it)
if (cfg%Lmodis_sim) call cosp_modis_cpsection(ix,iy,modis,modis_it)
if (cfg%Lmisr_sim) call cosp_misr_cpsection(ix,iy,misr,misr_it)
#ifdef RTTOV
if (cfg%Lrttov_sim) call cosp_rttov_cpsection(ix,iy,rttov,rttov_it)
#endif
if (cfg%Lradar_sim) call cosp_radarstats_cpsection(ix,iy,stradar,stradar_it)
if (cfg%Llidar_sim) call cosp_lidarstats_cpsection(ix,iy,stlidar,stlidar_it)
#ifdef RTTOV
call cosp_iter(overlap,seed(ix(1):ix(2)),cfg,vgrid_it,gbx_it,sgx_it,sgradar_it, &
sglidar_it,isccp_it,misr_it,modis_it,rttov_it,stradar_it,stlidar_it)
#else
call cosp_iter(overlap,seed(ix(1):ix(2)),cfg,vgrid_it,gbx_it,sgx_it,sgradar_it, &
sglidar_it,isccp_it,misr_it,modis_it,stradar_it,stlidar_it)
#endif
! --- Copy results to output structures ---
ix=(/1,Ni/)
iy=(/i_first,i_last/)
call cosp_subgrid_cpsection(ix,iy,sgx_it,sgx)
if (cfg%Lradar_sim) call cosp_sgradar_cpsection(ix,iy,sgradar_it,sgradar)
if (cfg%Llidar_sim) call cosp_sglidar_cpsection(ix,iy,sglidar_it,sglidar)
if (cfg%Lisccp_sim) call cosp_isccp_cpsection(ix,iy,isccp_it,isccp)
if (cfg%Lmodis_sim) call cosp_modis_cpsection(ix,iy,modis_it,modis)
if (cfg%Lmisr_sim) call cosp_misr_cpsection(ix,iy,misr_it,misr)
#ifdef RTTOV
if (cfg%Lrttov_sim) call cosp_rttov_cpsection(ix,iy,rttov_it,rttov)
#endif
if (cfg%Lradar_sim) call cosp_radarstats_cpsection(ix,iy,stradar_it,stradar)
if (cfg%Llidar_sim) call cosp_lidarstats_cpsection(ix,iy,stlidar_it,stlidar)
enddo
! Deallocate types
call free_cosp_gridbox(gbx_it,.true.)
call free_cosp_subgrid(sgx_it)
call free_cosp_vgrid(vgrid_it)
call free_cosp_sgradar(sgradar_it)
call free_cosp_sglidar(sglidar_it)
call free_cosp_isccp(isccp_it)
call free_cosp_modis(modis_it)
call free_cosp_misr(misr_it)
#ifdef RTTOV
call free_cosp_rttov(rttov_it)
#endif
call free_cosp_radarstats(stradar_it)
call free_cosp_lidarstats(stlidar_it)
endif
deallocate(seed)
END SUBROUTINE COSP
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
!--------------------- SUBROUTINE COSP_ITER ----------------------
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#ifdef RTTOV
SUBROUTINE COSP_ITER(overlap,seed,cfg,vgrid,gbx,sgx,sgradar,sglidar,isccp,misr,modis,rttov,stradar,stlidar)
#else
SUBROUTINE COSP_ITER(overlap,seed,cfg,vgrid,gbx,sgx,sgradar,sglidar,isccp,misr,modis,stradar,stlidar)
#endif
! Arguments
integer,intent(in) :: overlap ! overlap type in SCOPS: 1=max, 2=rand, 3=max/rand
integer,dimension(:),intent(in) :: seed
type(cosp_config),intent(in) :: cfg ! Configuration options
type(cosp_vgrid),intent(in) :: vgrid ! Information on vertical grid of stats
type(cosp_gridbox),intent(inout) :: gbx
type(cosp_subgrid),intent(inout) :: sgx ! Subgrid info
type(cosp_sgradar),intent(inout) :: sgradar ! Output from radar simulator
type(cosp_sglidar),intent(inout) :: sglidar ! Output from lidar simulator
type(cosp_isccp),intent(inout) :: isccp ! Output from ISCCP simulator
type(cosp_misr),intent(inout) :: misr ! Output from MISR simulator
type(cosp_modis),intent(inout) :: modis ! Output from MODIS simulator
#ifdef RTTOV
type(cosp_rttov),intent(inout) :: rttov ! Output from RTTOV
#endif
type(cosp_radarstats),intent(inout) :: stradar ! Summary statistics from radar simulator
type(cosp_lidarstats),intent(inout) :: stlidar ! Summary statistics from lidar simulator
! Local variables
integer :: Npoints ! Number of gridpoints
integer :: Ncolumns ! Number of subcolumns
integer :: Nlevels ! Number of levels
integer :: Nhydro ! Number of hydrometeors
integer :: i,j,k
integer :: I_HYDRO
real,dimension(:,:),pointer :: column_frac_out ! Array with one column of frac_out
real,dimension(:,:),pointer :: column_prec_out ! Array with one column of prec_frac
integer :: scops_debug=0 ! set to non-zero value to print out inputs for debugging in SCOPS
real,dimension(:, :),allocatable :: cca_scops,ls_p_rate,cv_p_rate, &
tca_scops ! Cloud cover in each model level (HORIZONTAL gridbox fraction) of total cloud.
! Levels are from TOA to SURFACE. (nPoints, nLev)
real,dimension(:,:),allocatable :: frac_ls,prec_ls,frac_cv,prec_cv ! Cloud/Precipitation fraction in each model level
! Levels are from SURFACE to TOA
real,dimension(:,:),allocatable :: rho ! (Npoints, Nlevels). Atmospheric density
type(cosp_sghydro) :: sghydro ! Subgrid info for hydrometeors en each iteration
!++++++++++ Dimensions ++++++++++++
Npoints = gbx%Npoints
Ncolumns = gbx%Ncolumns
Nlevels = gbx%Nlevels
Nhydro = gbx%Nhydro
!++++++++++ Climate/NWP mode ++++++++++
if (Ncolumns > 1) then
!++++++++++ Subgrid sampling ++++++++++
! Allocate arrays before calling SCOPS
allocate(frac_ls(Npoints,Nlevels),frac_cv(Npoints,Nlevels),prec_ls(Npoints,Nlevels),prec_cv(Npoints,Nlevels))
allocate(tca_scops(Npoints,Nlevels),cca_scops(Npoints,Nlevels), &
ls_p_rate(Npoints,Nlevels),cv_p_rate(Npoints,Nlevels))
! Initialize to zero
frac_ls=0.0
prec_ls=0.0
frac_cv=0.0
prec_cv=0.0
! Cloud fractions for SCOPS from TOA to SFC
tca_scops = gbx%tca(:,Nlevels:1:-1)
cca_scops = gbx%cca(:,Nlevels:1:-1)
! Call to SCOPS
! strat and conv arrays are passed with levels from TOA to SURFACE.
call scops(Npoints,Nlevels,Ncolumns,seed,tca_scops,cca_scops,overlap,sgx%frac_out,scops_debug)
! temporarily use prec_ls/cv to transfer information about precipitation flux into prec_scops
if(gbx%use_precipitation_fluxes) then
ls_p_rate(:,Nlevels:1:-1)=gbx%rain_ls(:,1:Nlevels)+gbx%snow_ls(:,1:Nlevels)+gbx%grpl_ls(:,1:Nlevels)
cv_p_rate(:,Nlevels:1:-1)=gbx%rain_cv(:,1:Nlevels)+gbx%snow_cv(:,1:Nlevels)
else
ls_p_rate(:,Nlevels:1:-1)=gbx%mr_hydro(:,1:Nlevels,I_LSRAIN)+ &
gbx%mr_hydro(:,1:Nlevels,I_LSSNOW)+ &
gbx%mr_hydro(:,1:Nlevels,I_LSGRPL)
cv_p_rate(:,Nlevels:1:-1)=gbx%mr_hydro(:,1:Nlevels,I_CVRAIN)+ &
gbx%mr_hydro(:,1:Nlevels,I_CVSNOW)
endif
call prec_scops(Npoints,Nlevels,Ncolumns,ls_p_rate,cv_p_rate,sgx%frac_out,sgx%prec_frac)
! Precipitation fraction
do j=1,Npoints,1
do k=1,Nlevels,1
do i=1,Ncolumns,1
if (sgx%frac_out (j,i,Nlevels+1-k) == I_LSC) frac_ls(j,k)=frac_ls(j,k)+1.
if (sgx%frac_out (j,i,Nlevels+1-k) == I_CVC) frac_cv(j,k)=frac_cv(j,k)+1.
if (sgx%prec_frac(j,i,Nlevels+1-k) .eq. 1) prec_ls(j,k)=prec_ls(j,k)+1.
if (sgx%prec_frac(j,i,Nlevels+1-k) .eq. 2) prec_cv(j,k)=prec_cv(j,k)+1.
if (sgx%prec_frac(j,i,Nlevels+1-k) .eq. 3) then
prec_cv(j,k)=prec_cv(j,k)+1.
prec_ls(j,k)=prec_ls(j,k)+1.
endif
enddo !i
frac_ls(j,k)=frac_ls(j,k)/Ncolumns
frac_cv(j,k)=frac_cv(j,k)/Ncolumns
prec_ls(j,k)=prec_ls(j,k)/Ncolumns
prec_cv(j,k)=prec_cv(j,k)/Ncolumns
enddo !k
enddo !j
! Levels from SURFACE to TOA.
if (Npoints*Ncolumns*Nlevels < 10000) then
sgx%frac_out(1:Npoints,:,1:Nlevels) = sgx%frac_out(1:Npoints,:,Nlevels:1:-1)
sgx%prec_frac(1:Npoints,:,1:Nlevels) = sgx%prec_frac(1:Npoints,:,Nlevels:1:-1)
else
! This is done within a loop (unvectorized) over nPoints to save memory
do j=1,Npoints
sgx%frac_out(j,:,1:Nlevels) = sgx%frac_out(j,:,Nlevels:1:-1)
sgx%prec_frac(j,:,1:Nlevels) = sgx%prec_frac(j,:,Nlevels:1:-1)
enddo
endif
! Deallocate arrays that will no longer be used
deallocate(tca_scops,cca_scops,ls_p_rate,cv_p_rate)
! Populate the subgrid arrays
call construct_cosp_sghydro(Npoints,Ncolumns,Nlevels,Nhydro,sghydro)
do k=1,Ncolumns
!--------- Mixing ratios for clouds and Reff for Clouds and precip -------
column_frac_out => sgx%frac_out(:,k,:)
where (column_frac_out == I_LSC) !+++++++++++ LS clouds ++++++++
sghydro%mr_hydro(:,k,:,I_LSCLIQ) = gbx%mr_hydro(:,:,I_LSCLIQ)
sghydro%mr_hydro(:,k,:,I_LSCICE) = gbx%mr_hydro(:,:,I_LSCICE)
sghydro%Reff(:,k,:,I_LSCLIQ) = gbx%Reff(:,:,I_LSCLIQ)
sghydro%Reff(:,k,:,I_LSCICE) = gbx%Reff(:,:,I_LSCICE)
sghydro%Np(:,k,:,I_LSCLIQ) = gbx%Np(:,:,I_LSCLIQ)
sghydro%Np(:,k,:,I_LSCICE) = gbx%Np(:,:,I_LSCICE)
elsewhere (column_frac_out == I_CVC) !+++++++++++ CONV clouds ++++++++
sghydro%mr_hydro(:,k,:,I_CVCLIQ) = gbx%mr_hydro(:,:,I_CVCLIQ)
sghydro%mr_hydro(:,k,:,I_CVCICE) = gbx%mr_hydro(:,:,I_CVCICE)
sghydro%Reff(:,k,:,I_CVCLIQ) = gbx%Reff(:,:,I_CVCLIQ)
sghydro%Reff(:,k,:,I_CVCICE) = gbx%Reff(:,:,I_CVCICE)
sghydro%Np(:,k,:,I_CVCLIQ) = gbx%Np(:,:,I_CVCLIQ)
sghydro%Np(:,k,:,I_CVCICE) = gbx%Np(:,:,I_CVCICE)
end where
column_prec_out => sgx%prec_frac(:,k,:)
where ((column_prec_out == 1) .or. (column_prec_out == 3) ) !++++ LS precip ++++
sghydro%Reff(:,k,:,I_LSRAIN) = gbx%Reff(:,:,I_LSRAIN)
sghydro%Reff(:,k,:,I_LSSNOW) = gbx%Reff(:,:,I_LSSNOW)
sghydro%Reff(:,k,:,I_LSGRPL) = gbx%Reff(:,:,I_LSGRPL)
sghydro%Np(:,k,:,I_LSRAIN) = gbx%Np(:,:,I_LSRAIN)
sghydro%Np(:,k,:,I_LSSNOW) = gbx%Np(:,:,I_LSSNOW)
sghydro%Np(:,k,:,I_LSGRPL) = gbx%Np(:,:,I_LSGRPL)
elsewhere ((column_prec_out == 2) .or. (column_prec_out == 3)) !++++ CONV precip ++++
sghydro%Reff(:,k,:,I_CVRAIN) = gbx%Reff(:,:,I_CVRAIN)
sghydro%Reff(:,k,:,I_CVSNOW) = gbx%Reff(:,:,I_CVSNOW)
sghydro%Np(:,k,:,I_CVRAIN) = gbx%Np(:,:,I_CVRAIN)
sghydro%Np(:,k,:,I_CVSNOW) = gbx%Np(:,:,I_CVSNOW)
end where
!--------- Precip -------
if (.not. gbx%use_precipitation_fluxes) then
where (column_frac_out == I_LSC) !+++++++++++ LS Precipitation ++++++++
sghydro%mr_hydro(:,k,:,I_LSRAIN) = gbx%mr_hydro(:,:,I_LSRAIN)
sghydro%mr_hydro(:,k,:,I_LSSNOW) = gbx%mr_hydro(:,:,I_LSSNOW)
sghydro%mr_hydro(:,k,:,I_LSGRPL) = gbx%mr_hydro(:,:,I_LSGRPL)
elsewhere (column_frac_out == I_CVC) !+++++++++++ CONV Precipitation ++++++++
sghydro%mr_hydro(:,k,:,I_CVRAIN) = gbx%mr_hydro(:,:,I_CVRAIN)
sghydro%mr_hydro(:,k,:,I_CVSNOW) = gbx%mr_hydro(:,:,I_CVSNOW)
end where
endif
enddo
! convert the mixing ratio and precipitation flux from gridbox mean to the fraction-based values
do k=1,Nlevels
do j=1,Npoints
!--------- Clouds -------
if (frac_ls(j,k) .ne. 0.) then
sghydro%mr_hydro(j,:,k,I_LSCLIQ) = sghydro%mr_hydro(j,:,k,I_LSCLIQ)/frac_ls(j,k)
sghydro%mr_hydro(j,:,k,I_LSCICE) = sghydro%mr_hydro(j,:,k,I_LSCICE)/frac_ls(j,k)
endif
if (frac_cv(j,k) .ne. 0.) then
sghydro%mr_hydro(j,:,k,I_CVCLIQ) = sghydro%mr_hydro(j,:,k,I_CVCLIQ)/frac_cv(j,k)
sghydro%mr_hydro(j,:,k,I_CVCICE) = sghydro%mr_hydro(j,:,k,I_CVCICE)/frac_cv(j,k)
endif
!--------- Precip -------
if (gbx%use_precipitation_fluxes) then
if (prec_ls(j,k) .ne. 0.) then
gbx%rain_ls(j,k) = gbx%rain_ls(j,k)/prec_ls(j,k)
gbx%snow_ls(j,k) = gbx%snow_ls(j,k)/prec_ls(j,k)
gbx%grpl_ls(j,k) = gbx%grpl_ls(j,k)/prec_ls(j,k)
endif
if (prec_cv(j,k) .ne. 0.) then
gbx%rain_cv(j,k) = gbx%rain_cv(j,k)/prec_cv(j,k)
gbx%snow_cv(j,k) = gbx%snow_cv(j,k)/prec_cv(j,k)
endif
else
if (prec_ls(j,k) .ne. 0.) then
sghydro%mr_hydro(j,:,k,I_LSRAIN) = sghydro%mr_hydro(j,:,k,I_LSRAIN)/prec_ls(j,k)
sghydro%mr_hydro(j,:,k,I_LSSNOW) = sghydro%mr_hydro(j,:,k,I_LSSNOW)/prec_ls(j,k)
sghydro%mr_hydro(j,:,k,I_LSGRPL) = sghydro%mr_hydro(j,:,k,I_LSGRPL)/prec_ls(j,k)
endif
if (prec_cv(j,k) .ne. 0.) then
sghydro%mr_hydro(j,:,k,I_CVRAIN) = sghydro%mr_hydro(j,:,k,I_CVRAIN)/prec_cv(j,k)
sghydro%mr_hydro(j,:,k,I_CVSNOW) = sghydro%mr_hydro(j,:,k,I_CVSNOW)/prec_cv(j,k)
endif
endif
enddo !k
enddo !j
deallocate(frac_ls,prec_ls,frac_cv,prec_cv)
if (gbx%use_precipitation_fluxes) then
#ifdef MMF_V3p5_TWO_MOMENT
write(*,*) 'Precipitation Flux to Mixing Ratio conversion not (yet?) supported ', &
'for MMF3.5 Two Moment Microphysics'
stop
#else
! Density
allocate(rho(Npoints,Nlevels))
I_HYDRO = I_LSRAIN
call cosp_precip_mxratio(Npoints,Nlevels,Ncolumns,gbx%p,gbx%T,sgx%prec_frac,1., &
n_ax(I_HYDRO),n_bx(I_HYDRO),alpha_x(I_HYDRO),c_x(I_HYDRO),d_x(I_HYDRO), &
g_x(I_HYDRO),a_x(I_HYDRO),b_x(I_HYDRO), &
gamma_1(I_HYDRO),gamma_2(I_HYDRO),gamma_3(I_HYDRO),gamma_4(I_HYDRO), &
gbx%rain_ls,sghydro%mr_hydro(:,:,:,I_HYDRO),sghydro%Reff(:,:,:,I_HYDRO))
I_HYDRO = I_LSSNOW
call cosp_precip_mxratio(Npoints,Nlevels,Ncolumns,gbx%p,gbx%T,sgx%prec_frac,1., &
n_ax(I_HYDRO),n_bx(I_HYDRO),alpha_x(I_HYDRO),c_x(I_HYDRO),d_x(I_HYDRO), &
g_x(I_HYDRO),a_x(I_HYDRO),b_x(I_HYDRO), &
gamma_1(I_HYDRO),gamma_2(I_HYDRO),gamma_3(I_HYDRO),gamma_4(I_HYDRO), &
gbx%snow_ls,sghydro%mr_hydro(:,:,:,I_HYDRO),sghydro%Reff(:,:,:,I_HYDRO))
I_HYDRO = I_CVRAIN
call cosp_precip_mxratio(Npoints,Nlevels,Ncolumns,gbx%p,gbx%T,sgx%prec_frac,2., &
n_ax(I_HYDRO),n_bx(I_HYDRO),alpha_x(I_HYDRO),c_x(I_HYDRO),d_x(I_HYDRO), &
g_x(I_HYDRO),a_x(I_HYDRO),b_x(I_HYDRO), &
gamma_1(I_HYDRO),gamma_2(I_HYDRO),gamma_3(I_HYDRO),gamma_4(I_HYDRO), &
gbx%rain_cv,sghydro%mr_hydro(:,:,:,I_HYDRO),sghydro%Reff(:,:,:,I_HYDRO))
I_HYDRO = I_CVSNOW
call cosp_precip_mxratio(Npoints,Nlevels,Ncolumns,gbx%p,gbx%T,sgx%prec_frac,2., &
n_ax(I_HYDRO),n_bx(I_HYDRO),alpha_x(I_HYDRO),c_x(I_HYDRO),d_x(I_HYDRO), &
g_x(I_HYDRO),a_x(I_HYDRO),b_x(I_HYDRO), &
gamma_1(I_HYDRO),gamma_2(I_HYDRO),gamma_3(I_HYDRO),gamma_4(I_HYDRO), &
gbx%snow_cv,sghydro%mr_hydro(:,:,:,I_HYDRO),sghydro%Reff(:,:,:,I_HYDRO))
I_HYDRO = I_LSGRPL
call cosp_precip_mxratio(Npoints,Nlevels,Ncolumns,gbx%p,gbx%T,sgx%prec_frac,1., &
n_ax(I_HYDRO),n_bx(I_HYDRO),alpha_x(I_HYDRO),c_x(I_HYDRO),d_x(I_HYDRO), &
g_x(I_HYDRO),a_x(I_HYDRO),b_x(I_HYDRO), &
gamma_1(I_HYDRO),gamma_2(I_HYDRO),gamma_3(I_HYDRO),gamma_4(I_HYDRO), &
gbx%grpl_ls,sghydro%mr_hydro(:,:,:,I_HYDRO),sghydro%Reff(:,:,:,I_HYDRO))
if(allocated(rho)) deallocate(rho)
#endif
endif
!++++++++++ CRM mode ++++++++++
else
call construct_cosp_sghydro(Npoints,Ncolumns,Nlevels,Nhydro,sghydro)
sghydro%mr_hydro(:,1,:,:) = gbx%mr_hydro
sghydro%Reff(:,1,:,:) = gbx%Reff
sghydro%Np(:,1,:,:) = gbx%Np ! added by Roj with Quickbeam V3.0
!--------- Clouds -------
where ((gbx%dtau_s > 0.0))
sgx%frac_out(:,1,:) = 1 ! Subgrid cloud array. Dimensions (Npoints,Ncolumns,Nlevels)
endwhere
endif ! Ncolumns > 1
!++++++++++ Simulator ++++++++++
#ifdef RTTOV
call cosp_simulator(gbx,sgx,sghydro,cfg,vgrid,sgradar,sglidar,isccp,misr,modis,rttov,stradar,stlidar)
#else
call cosp_simulator(gbx,sgx,sghydro,cfg,vgrid,sgradar,sglidar,isccp,misr,modis,stradar,stlidar)
#endif
! Deallocate subgrid arrays
call free_cosp_sghydro(sghydro)
END SUBROUTINE COSP_ITER
END MODULE MOD_COSP