-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathcomplex_tensor.py
57 lines (46 loc) · 1.67 KB
/
complex_tensor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import torch
class ComplexTensor(torch.Tensor):
def __new__(cls, re, im):
assert (
re.device == im.device
and re.layout == im.layout
and re.requires_grad == im.requires_grad
and re.dtype == im.dtype
)
res = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
cls,
size=re.size(),
strides=re.stride(), # todo: contiguous only
storage_offset=0,
dtype=torch.complex64, # todo: real to complex dtype
layout=re.layout,
device=re.device,
requires_grad=False, # todo: autograd support
)
res.re = re
res.im = im
return res
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
if func is torch.ops.aten.mm.default:
assert not kwargs
x, y = args
re = x.re * y.re - x.im * y.im
im = x.re * y.im + x.im * y.re
return ComplexTensor(re, im)
raise NotImplementedError(f"todo {func}")
def __tensor_flatten__(self):
return ["re", "im"], None
@staticmethod
def __tensor_unflatten__(inner_tensors, meta):
assert meta is None
re, im = inner_tensors["re"], inner_tensors["im"]
return ComplexTensor(re, im)
def __repr__(self):
return f"ComplexTensor(real={self.re}, imag={self.im})"
if __name__ == "__main__":
@torch.compile()
def f(x, y):
return x @ y
x = ComplexTensor(torch.tensor([[1]]), torch.tensor([[2]]))
y = ComplexTensor(torch.tensor([[3]]), torch.tensor([[4]]))
print(f(x, y)) # (1 + 2i) * (3 + 4i) = -5 + 10i