Hantian Liu, Jiacheng Gao, Zhicheng Dong
This is an implementation of probabilistic U-Net.
We implemented probabilistic U-Net model and baseline method U-Net.
Use ./citysacpe/preprocess
to preprocess the cityscape dataset.
Use ./LIDC/load_process_LIDC
to preprocess the LIDC dataset.
Training Usage
main.py [-h] -b BATCH_SIZE [--val-after VAL_AFTER] -e EPOCH [--gpu] [--lr LR] dataset
positional arguments: dataset Type of dataset, "city" for Cityscape, "lidc" for LIDC dataset
optional arguments:
-h, --help show this help message and exit
-b BATCH_SIZE, --batch-size BATCH_SIZE:
Batch size for train and val
--val-after VAL_AFTER:
Run validation after this No of iterations
-e EPOCH, --epoch EPOCH:
Number of epochs
--gpu: Use GPU if available
--lr LR: Learning rate
After training, we could use produce_label_img.py
to segment images with our trained model.
After getting the segmentations, use ./citysacpe/covert_label2RGB.py
to transfer label images to colorful images.