Skip to content

alanlau64/prob_unet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A Probabilistic U-Net for Segmentation of Ambiguous Images

Hantian Liu, Jiacheng Gao, Zhicheng Dong

This is an implementation of probabilistic U-Net.

We implemented probabilistic U-Net model and baseline method U-Net.

Use ./citysacpe/preprocess to preprocess the cityscape dataset.

Use ./LIDC/load_process_LIDC to preprocess the LIDC dataset.

Training Usage

main.py [-h] -b BATCH_SIZE [--val-after VAL_AFTER] -e EPOCH [--gpu] [--lr LR] dataset

positional arguments: dataset Type of dataset, "city" for Cityscape, "lidc" for LIDC dataset

optional arguments: -h, --help show this help message and exit
-b BATCH_SIZE, --batch-size BATCH_SIZE: Batch size for train and val
--val-after VAL_AFTER: Run validation after this No of iterations
-e EPOCH, --epoch EPOCH: Number of epochs
--gpu: Use GPU if available
--lr LR: Learning rate

After training, we could use produce_label_img.py to segment images with our trained model. After getting the segmentations, use ./citysacpe/covert_label2RGB.py to transfer label images to colorful images.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages