forked from npinto/libsvm-2.88_objs-np
-
Notifications
You must be signed in to change notification settings - Fork 1
/
svm-predict.c
186 lines (168 loc) · 3.97 KB
/
svm-predict.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>
#include "svm.h"
struct svm_node *x;
int max_nr_attr = 64;
struct svm_model* model;
int predict_probability=0;
void predict(FILE *input, FILE *output)
{
int correct = 0;
int total = 0;
double error = 0;
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
int svm_type=svm_get_svm_type(model);
int nr_class=svm_get_nr_class(model);
double *prob_estimates=NULL;
int j;
if(predict_probability)
{
if (svm_type==NU_SVR || svm_type==EPSILON_SVR)
printf("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model));
else
{
int *labels=(int *) malloc(nr_class*sizeof(int));
svm_get_labels(model,labels);
prob_estimates = (double *) malloc(nr_class*sizeof(double));
fprintf(output,"labels");
for(j=0;j<nr_class;j++)
fprintf(output," %d",labels[j]);
fprintf(output,"\n");
free(labels);
}
}
while(1)
{
int i = 0;
int c;
double target,v;
if (fscanf(input,"%lf",&target)==EOF)
break;
while(1)
{
if(i>=max_nr_attr-1) // need one more for index = -1
{
max_nr_attr *= 2;
x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct svm_node));
}
do {
c = getc(input);
if(c=='\n' || c==EOF) goto out2;
} while(isspace(c));
ungetc(c,input);
if (fscanf(input,"%d:%lf",&x[i].index,&x[i].value) < 2)
{
fprintf(stderr,"Wrong input format at line %d\n", total+1);
exit(1);
}
++i;
}
out2:
x[i].index = -1;
if (predict_probability && (svm_type==C_SVC || svm_type==NU_SVC))
{
v = svm_predict_probability(model,x,prob_estimates);
fprintf(output,"%g",v);
for(j=0;j<nr_class;j++)
fprintf(output," %g",prob_estimates[j]);
fprintf(output,"\n");
}
else
{
v = svm_predict(model,x);
fprintf(output,"%g\n",v);
}
if(v == target)
++correct;
error += (v-target)*(v-target);
sumv += v;
sumy += target;
sumvv += v*v;
sumyy += target*target;
sumvy += v*target;
++total;
}
if (svm_type==NU_SVR || svm_type==EPSILON_SVR)
{
printf("Mean squared error = %g (regression)\n",error/total);
printf("Squared correlation coefficient = %g (regression)\n",
((total*sumvy-sumv*sumy)*(total*sumvy-sumv*sumy))/
((total*sumvv-sumv*sumv)*(total*sumyy-sumy*sumy))
);
}
else
printf("Accuracy = %g%% (%d/%d) (classification)\n",
(double)correct/total*100,correct,total);
if(predict_probability)
free(prob_estimates);
}
void exit_with_help()
{
printf(
"Usage: svm-predict [options] test_file model_file output_file\n"
"options:\n"
"-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); for one-class SVM only 0 is supported\n"
);
exit(1);
}
int main(int argc, char **argv)
{
FILE *input, *output;
int i;
// parse options
for(i=1;i<argc;i++)
{
if(argv[i][0] != '-') break;
++i;
switch(argv[i-1][1])
{
case 'b':
predict_probability = atoi(argv[i]);
break;
default:
fprintf(stderr,"Unknown option: -%c\n", argv[i-1][1]);
exit_with_help();
}
}
if(i>=argc)
exit_with_help();
input = fopen(argv[i],"r");
if(input == NULL)
{
fprintf(stderr,"can't open input file %s\n",argv[i]);
exit(1);
}
output = fopen(argv[i+2],"w");
if(output == NULL)
{
fprintf(stderr,"can't open output file %s\n",argv[i+2]);
exit(1);
}
if((model=svm_load_model(argv[i+1]))==0)
{
fprintf(stderr,"can't open model file %s\n",argv[i+1]);
exit(1);
}
x = (struct svm_node *) malloc(max_nr_attr*sizeof(struct svm_node));
if(predict_probability)
{
if(svm_check_probability_model(model)==0)
{
fprintf(stderr,"Model does not support probabiliy estimates\n");
exit(1);
}
}
else
{
if(svm_check_probability_model(model)!=0)
printf("Model supports probability estimates, but disabled in prediction.\n");
}
predict(input,output);
svm_destroy_model(model);
free(x);
fclose(input);
fclose(output);
return 0;
}