-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcov_estimators.py
185 lines (154 loc) · 6.24 KB
/
cov_estimators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Covariance Estimators
import numpy as np
import pdb
from sklearn.model_selection import KFold
from sklearn.decomposition import FactorAnalysis
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split
# from pyuoi.linear_model.base import AbstractUoILinearModel
from sklearn.covariance import GraphicalLasso, EmpiricalCovariance
import timeout_decorator
# Set all elements a distance > k from the diagonal to zero
def banded_matrix(M, k):
mask = (np.tri(M.shape[0], k = - k - 1) + np.tri(M.shape[0], k = -k - 1).T) != 0
M[mask] = 0
return M
# Simply cutoff elements a certain distance from the diagonal.
# Choose this distance by estimation of the risk through re-sampling
#@timeout_decorator.timeout(5 * 60, use_signals = False)
def banding(X, n_splits = 10):
n = X.shape[0]
p = X.shape[1]
# Mean center X:
X = X - np.mean(X, axis = 0)
# Possible values of k:
K = np.arange(0, p)
risk = np.zeros(p)
for k in K:
for i in range(n_splits):
X1, X2 = train_test_split(X, train_size = 0.33, test_size = 0.67)
empirical_cov = EmpiricalCovariance().fit(X1).covariance_
banded_cov = banded_matrix(empirical_cov, k)
empirical_cov = EmpiricalCovariance().fit(X2).covariance_
risk[k] += 1/n_splits * np.sum(np.abs(banded_cov - empirical_cov))
# Choose k that minimizes the risk:
k_f = K[np.argmin(risk)]
empirical_full = EmpiricalCovariance().fit(X).covariance_
return banded_matrix(empirical_full, k_f)
def modified_cholesky(X, k):
Xhat = np.zeros((X.shape[0], X.shape[1]))
A = np.zeros((X.shape[1], X.shape[1]))
for j in range(X.shape[1]):
if j == 0:
continue
Zj = X[:, max(0, j - k): j]
# Caclulate the a_j coefficients:
aj = np.linalg.pinv(Zj) @ X[:, j]
A[j, j - aj.size:j] = aj
Xhat[:, j] = Zj @ aj
epsilon = X - Xhat
D = np.diag(np.var(epsilon, axis = 0))
return (np.identity(X.shape[1]) - A).T @ np.linalg.inv(D) @\
(np.identity(X.shape[1]) - A)
#@timeout_decorator.timeout(5*60, use_signals = False)
def inverse_banding(X, n_splits = 10):
n = X.shape[0]
p = X.shape[1]
# Mean center X:
X = X - np.mean(X, axis = 0)
# Possible values of k:
K = np.arange(1, min(n, p))
risk = np.zeros(min(n, p) - 1)
for i, k in enumerate(K):
for i in range(n_splits):
X1, X2 = train_test_split(X, train_size = 0.33, test_size = 0.67)
sigma_k1 = modified_cholesky(X1, k)
sigma_k2 = modified_cholesky(X2, X2.shape[1])
risk[i] += 1/n_splits * np.sum(np.abs(sigma_k1 - sigma_k2))
# Choose k that minimizes the risk:
k_f = K[np.argmin(risk)]
SigmaInv = modified_cholesky(X, k_f)
return np.linalg.inv(SigmaInv)
# First identify factor model by fitting latent factor model to data,
# using cross validation to choose the factor size
#@timeout_decorator.timeout(60 * 60, use_signals = False)
def factor_model(X):
n = X.shape[0]
p = X.shape[1]
n_factors = np.arange(1, p)
model_scores = np.zeros(n_factors.size)
fa = FactorAnalysis()
fa_scores = np.zeros(n_factors.size)
for i, n in enumerate(n_factors):
fa.n_components = n
fa_scores[i] = np.mean(cross_val_score(fa, X, cv = 5))
cv_nfactors = n_factors[np.argmax(fa_scores)]
fa.n_components = cv_nfactors
fa.fit(X)
return fa.get_covariance()
# Simple thresholding, thresholding strength chosen by empirical risk minimization
#@timeout_decorator.timeout(5*60, use_signals = False)
def thresholding(X, n_splits = 10):
n = X.shape[0]
p = X.shape[1]
n1 = (1 - 1/np.log(n))
n2 = 1/np.log(n)
# Mean center X:
X = X - np.mean(X, axis = 0)
empirical_full = EmpiricalCovariance().fit(X).covariance_
# Possible values of m:
M = np.linspace(0, np.amax(empirical_full), num=50)
risk = np.zeros(M.size)
for idx, m in enumerate(M):
for i in range(n_splits):
X1, X2 = train_test_split(X, train_size = n1, test_size = n2)
empirical_cov = EmpiricalCovariance().fit(X1).covariance_
thresh_cov = empirical_cov.copy()
thresh_cov[thresh_cov < m] = 0
empirical_cov = EmpiricalCovariance().fit(X2).covariance_
risk[idx] += 1/n_splits * np.linalg.norm(thresh_cov - empirical_cov, 'fro')
# Choose k that minimizes the risk:
m_f = M[np.argmin(risk)]
thresh_cov = empirical_full.copy()
thresh_cov[thresh_cov < m_f] = 0
return thresh_cov
# Use UoI Lasso in place of Lasso in the Graphical Lasso algorithm
# class UoIGraphicalLasso(AbstractUoILinearModel):
# # Rename covariance to coef_
# class ModifiedGraphicalLasso(GraphicalLasso):
# def __init__(self):
# super(ModifiedGraphicalLasso, self).__init__()
# def fit(X, y = None):
# super(ModifiedGraphicalLasso, self).fit(X)
# self.coef_ = self.covariance_.ravel()
# class UnregGraphicalModel():
# def __init__(self):
# pass
# def fit(X, y = None):
# pass
# def __init__(self, n_boots_sel=48, n_boots_est=48, selection_frac=0.9,
# estimation_frac=0.9, n_lambdas=48, stability_selection=1.,
# eps=1e-3, warm_start=True, random_state=None, max_iter=100,
# comm=None):
# super(UoIGraphicalLasso, self).__init__(
# n_boots_sel = n_boots_sel, n_boots_est = n_boots_est,
# selection_frac = selection_frac, estimation_frac = estimation_frac,
# stability_selection = stability_selection, random_state = random_state,
# comm = comm
# )
# self.n_lambdas = n_lambdas
# self.eps = eps
# self.__selection_lm = self.ModifiedGraphicalLasso(max_iter = max_iter)
# self.__estimation_lm = self.UnregGraphicalModel()
# # For selection
# @property
# def selection_lm(self):
# return self.__selection_lm
# @property
# def estimation_lm(self):
# return self._estimation_lm
# def score_predictions():
# pass
# # Follow the same approach as sklearn's CVGraphicalLasso to select reg_parmas
# def get_reg_params(self, X, y = None):
# pass