forked from ashleve/lightning-hydra-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDockerfile
57 lines (39 loc) · 1.5 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Build: sudo docker build -t <project_name> .
# Run: sudo docker run -v $(pwd):/workspace/project --gpus all -it --rm <project_name>
FROM nvidia/cuda:10.2-cudnn7-devel-ubuntu18.04
ENV CONDA_ENV_NAME=myenv
ENV PYTHON_VERSION=3.8
# Basic setup
RUN apt update
RUN apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
wget \
&& rm -rf /var/lib/apt/lists
# Set working directory
WORKDIR /workspace/project
# Install Miniconda and create main env
ADD https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh miniconda3.sh
RUN /bin/bash miniconda3.sh -b -p /conda \
&& echo export PATH=/conda/bin:$PATH >> .bashrc \
&& rm miniconda3.sh
ENV PATH="/conda/bin:${PATH}"
RUN conda create -n ${CONDA_ENV_NAME} python=${PYTHON_VERSION}
# Switch to bash shell
SHELL ["/bin/bash", "-c"]
# Install requirements
COPY requirements.txt ./
RUN source activate ${CONDA_ENV_NAME} \
&& pip install --no-cache-dir -r requirements.txt \
&& rm requirements.txt
# Uncomment this to install Apex for mixed-precision support
# RUN source activate ${CONDA_ENV_NAME} \
# && git clone https://github.com/NVIDIA/apex \
# && cd apex \
# && pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./ \
# && cd .. \
# && rm -r apex
# Set ${CONDA_ENV_NAME} to default virutal environment
RUN echo "source activate ${CONDA_ENV_NAME}" >> ~/.bashrc