-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain_nus.py
378 lines (330 loc) · 16.4 KB
/
train_nus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri May 8 21:56:19 2020
@author: naraysa & akshitac8
"""
import torch
import torch.backends.cudnn as cudnn
import torch.optim as optim
import model as model
import util_nus as util
from config import opt
import numpy as np
import random
import time
import os
import socket
import h5py
import pickle
import logging
from warmup_scheduler import GradualWarmupScheduler
## setting up the logs folder ##
if not os.path.exists("logs"):
os.mkdir("logs")
log_filename = os.path.join("logs",opt.SESSION + '.log')
logging.basicConfig(level=logging.INFO, filename=log_filename)
logging.info(("Process JOB ID :{}").format(opt.job_id))
print(opt)
logging.info(opt)
#############################################
#setting up seeds
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
np.random.seed(opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
if opt.cuda:
torch.cuda.manual_seed(opt.manualSeed)
torch.cuda.manual_seed_all(opt.manualSeed)
torch.set_default_tensor_type('torch.FloatTensor')
cudnn.benchmark = True # For speed i.e, cudnn autotuner
########################################################
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
name='NUS_WIDE_{}'.format(opt.SESSION)
opt.save_path += '/'+name
os.system("mkdir -p " + opt.save_path)
data = util.DATA_LOADER(opt) ### INTIAL DATALOADER ###
print('===> Loading datasets')
print(opt.src)
print('===> Result path ')
print(opt.save_path)
print('===> total samples')
print(data.ntrain)
logging.info('===> Loading datasets')
logging.info(opt.src)
logging.info('===> Result path ')
logging.info(opt.save_path)
logging.info('===> total samples')
logging.info(data.ntrain)
def train_sample():
#train dataloader
train_batch_feature, train_batch_labels = data.next_train_batch(opt.batch_size)
return train_batch_feature, train_batch_labels
def val_sample():
#val dataloader
val_feature, val_labels_925, val_labels_81 = data.next_val()
return val_feature, val_labels_925, val_labels_81
### Intialize attention model and global feature extractor ####
model_vgg = model.vgg_net()
model_biam = model.BiAM(opt, dim_feature=[196,512])
model_test = model.BiAM(opt, dim_feature=[196,512])
print(model_biam)
logging.info(model_biam)
## initialize optimizer ###
optimizer = torch.optim.Adam(model_biam.parameters(), opt.lr, weight_decay=0.0005, betas=(opt.beta1, 0.999))
start_epoch = 1
num_epochs = opt.nepoch+1
if opt.cosinelr_scheduler:
print("------------------------------------------------------------------")
print("USING LR SCHEDULER")
print("------------------------------------------------------------------")
######### Scheduler ###########
warmup_epochs = 3
scheduler_cosine = optim.lr_scheduler.CosineAnnealingLR(optimizer, opt.nepoch-warmup_epochs, eta_min=opt.lr_min)
scheduler = GradualWarmupScheduler(optimizer, multiplier=1, total_epoch=warmup_epochs, after_scheduler=scheduler_cosine)
scheduler.step()
print("initial learning rate", opt.lr)
logging.info(("initial learning rate {}".format(opt.lr)))
logger = util.Logger(cols=['index','mF1','mF1_u_val','mAP','lr','val_loss'],filename=opt.save_path+'/log.csv',is_save=True)
eval_interval = max((opt.eval_interval),2)
print(optimizer)
logging.info(optimizer)
if opt.cuda:
model_biam = model_biam.cuda()
model_test = model_test.cuda()
model_vgg.cuda()
model_vgg.eval()
data.vecs_81 = data.vecs_81.cuda()
data.vecs_925 = data.vecs_925.cuda()
gzsl_vecs = torch.cat([data.vecs_925,data.vecs_81],0)
## train function ###
def train(epoch):
print("TRAINING MODE")
logging.info("TRAINING MODE")
epoch_start_time = time.time()
mean_loss = 0
for i in range(0, data.ntrain, opt.batch_size):
optimizer.zero_grad()
train_inputs, train_labels = train_sample()
### remove empty label images while training ###
temp_label = torch.clamp(train_labels,0,1)
temp_seen_labels = temp_label.sum(1)
temp_label = temp_label[temp_seen_labels>0]
train_labels = train_labels[temp_seen_labels>0]
train_inputs = train_inputs[temp_seen_labels>0]
###
train_inputs = train_inputs.cuda()
train_labels = train_labels.cuda()
vgg_4096 = model_vgg(train_inputs)
vgg_4096 = vgg_4096.detach()
logits = model_biam(train_inputs, data.vecs_925, vgg_4096)
loss = model.ranking_lossT(logits, train_labels.float())
mean_loss += loss.item()
if torch.isnan(loss) or loss.item() > 100:
print('Unstable/High Loss:', loss)
import pdb; pdb.set_trace()
loss.backward()
optimizer.step()
mean_loss /= data.ntrain / opt.batch_size
if opt.cosinelr_scheduler:
learning_rate = scheduler.get_lr()[0]
else:
learning_rate = opt.lr
if opt.train:
print("------------------------------------------------------------------")
print("Epoch: {}/{} \tTime: {:.4f}\tLoss: {:.4f}\tLearningRate {:.6f}".format(epoch, num_epochs, time.time()-epoch_start_time,mean_loss, learning_rate))
print("------------------------------------------------------------------")
logging.info("------------------------------------------------------------------")
logging.info("Epoch: {}/{} \tTime: {:.4f}\tLoss: {:.4f}\tLearningRate {:.6f}".format(epoch, num_epochs, time.time()-epoch_start_time,mean_loss, learning_rate))
logging.info("------------------------------------------------------------------")
else:
learning_rate = opt.train_full_lr
print("------------------------------------------------------------------")
print("FINETUNING Epoch: {}/{} \tTime: {:.4f}\tLoss: {:.4f}\tLearningRate {:.6f}".format(epoch, num_epochs, time.time()-epoch_start_time,mean_loss, learning_rate))
print("------------------------------------------------------------------")
logging.info("------------------------------------------------------------------")
logging.info("FINETUNING Epoch: {}/{} \tTime: {:.4f}\tLoss: {:.4f}\tLearningRate {:.6f}".format(epoch, num_epochs, time.time()-epoch_start_time,mean_loss, learning_rate))
logging.info("------------------------------------------------------------------")
torch.save(model_biam.state_dict(), os.path.join(opt.save_path,("model_best_train_full_{}.pth").format(epoch)))
## validation function ###
def val(epoch):
print("validation mode")
logging.info("validation mode")
val_start_time = time.time()
mean_val_loss = 0
### load val data ###
seen_val_visual_features, seen_925_val_visual_labels, seen_81_val_visual_labels = val_sample()
seen_val_visual_features = seen_val_visual_features
seen_925_val_visual_labels = seen_925_val_visual_labels
seen_81_val_visual_labels = seen_81_val_visual_labels
prediction_81 = torch.empty(len(seen_81_val_visual_labels),81)
prediction_925 = torch.empty(len(seen_81_val_visual_labels),925)
val_batch_size = opt.val_batch_size
if model_vgg is not None:
model_vgg.eval()
for i in range(0, len(seen_81_val_visual_labels), val_batch_size):
strt = i
endt = min(i+val_batch_size, len(seen_81_val_visual_labels))
with torch.no_grad():
vgg_4096 = model_vgg(seen_val_visual_features[strt:endt,:,:].cuda()) #if model_vgg is not None else None
vgg_4096 = vgg_4096.detach() #check if this is needed
logits_81 = model_biam(seen_val_visual_features[strt:endt,:,:].cuda(), data.vecs_81, vgg_4096)
logits_925 = model_biam(seen_val_visual_features[strt:endt,:,:].cuda(), data.vecs_925, vgg_4096)
loss_925 = model.ranking_lossT(logits_925.cuda(), seen_925_val_visual_labels[strt:endt,:].cuda().float())
prediction_81[strt:endt,:] = logits_81
prediction_925[strt:endt,:] = logits_925
mean_val_loss += loss_925.item()
mean_val_loss /= len(seen_81_val_visual_labels) / val_batch_size
if opt.cosinelr_scheduler:
learning_rate = scheduler.get_lr()[0]
else:
learning_rate = opt.lr
print("------------------------------------------------------------------")
print("Epoch: {}/{} \tTime: {:.4f}\tLoss: {:.4f}\tLearningRate {:.6f}".format(epoch, num_epochs,time.time()-val_start_time, mean_val_loss, learning_rate))
print("------------------------------------------------------------------")
logging.info("------------------------------------------------------------------")
logging.info("Epoch: {}/{} \tTime: {:.4f}\tLoss: {:.4f}\tLearningRate {:.6f}".format(epoch, num_epochs,time.time()-val_start_time, mean_val_loss, learning_rate))
logging.info("------------------------------------------------------------------")
ap_val = util.compute_AP(prediction_925.cuda(), seen_925_val_visual_labels.cuda())
F1_val,P_val,R_val = util.compute_F1(prediction_925.cuda(), seen_925_val_visual_labels.cuda(), 'overall', k_val=5)
F1_u_val,P_u_val,R_u_val = util.compute_F1(prediction_81.cuda(), seen_81_val_visual_labels.cuda(), 'overall', k_val=5)
mF1_val,mP_val,mR_val,mAP_val = [torch.mean(F1_val),torch.mean(P_val),torch.mean(R_val),torch.mean(ap_val)]
mF1_u_val,mP_u_val,mR_u_val = [torch.mean(F1_u_val),torch.mean(P_u_val),torch.mean(R_u_val)]
print('SEEN AP',mAP_val.item())
print('k=5 AT 925',mF1_val.item(),mP_val.item(),mR_val.item())
print('k=5 AT 81 ',mF1_u_val.item(),mP_u_val.item(),mR_u_val.item())
logging.info('SEEN AP=%.4f',mAP_val.item())
logging.info('k=5 AT 925: %.4f,%.4f,%.4f',mF1_val.item(),mP_val.item(),mR_val.item())
logging.info('k=5 AT 81: %.4f,%.4f,%.4f ',mF1_u_val.item(),mP_u_val.item(),mR_u_val.item())
values = [epoch, mF1_val,mF1_u_val,mAP_val,learning_rate, mean_val_loss]
logger.add(values)
print('{} mF1: {} mF1_u_val: {} mAP: {} lr: {}'.format(*values))
print('Precision: {} Recall: {}'.format(mP_val,mR_val))
logging.info('{} mF1: {} mF1_u_val: {} mAP: {} lr: {}'.format(*values))
logging.info('Precision: {} Recall: {}'.format(mP_val,mR_val))
logger.save()
if mF1_val >= logger.get_max('mF1'):
print("model saved")
logging.info("model saved")
torch.save(model_biam.state_dict(), os.path.join(opt.save_path,"model_best.pth"))
torch.save(model_biam.state_dict(), os.path.join(opt.save_path,"model_latest.pth"))
def test(epoch):
print("=======================EVALUATION MODE=======================")
logging.info("=======================EVALUATION MODE=======================")
test_start_time = time.time()
if not opt.train:
model_path = os.path.join(opt.save_path, ('model_best_train_full_{}.pth').format(epoch))
else:
model_path = os.path.join(opt.save_path, 'model_best.pth')
print(model_path)
logging.info(model_path)
model_test.load_state_dict(torch.load(model_path))
model_test.eval()
src = opt.src
test_loc = os.path.join(src, 'NUS-WIDE','features', 'nus_wide_test.h5')
test_features = h5py.File(test_loc, 'r')
test_feature_keys = list(test_features.keys())
image_filenames = util.load_dict(os.path.join(src, 'NUS-WIDE', 'test_img_names.pkl'))
test_image_filenames = image_filenames['img_names']
ntest = len(test_image_filenames)
print(ntest)
logging.info(ntest)
prediction_81 = torch.empty(ntest,81)
prediction_1006 = torch.empty(ntest,1006)
lab_81 = torch.empty(ntest,81)
lab_1006 = torch.empty(ntest,1006)
test_batch_size = opt.test_batch_size
if model_vgg is not None:
logging.info("model vgg not none")
model_vgg.eval()
for m in range(0, ntest, test_batch_size):
strt = m
endt = min(m+test_batch_size, ntest)
bs = endt-strt
features, labels_1006, labels_81 = np.empty((bs,512,196)), np.empty((bs,1006)), np.empty((bs,81))
for i, key in enumerate(test_image_filenames[strt:endt]):
features[i,:,:] = np.float32(test_features.get(key+'-features'))
labels_1006[i,:] = np.int32(test_features.get(key+'-labels'))
labels_81[i,:] = np.int32(test_features.get(key+'-labels_81'))
features = torch.from_numpy(features).float()
labels_1006 = torch.from_numpy(labels_1006).long()
labels_81 = torch.from_numpy(labels_81).long()
with torch.no_grad():
vgg_4096 = model_vgg(features.cuda()) #if model_vgg is not None else None
vgg_4096 = vgg_4096.detach()
logits_81 = model_test(features.cuda(), data.vecs_81, vgg_4096)
logits_1006 = model_test(features.cuda(), gzsl_vecs, vgg_4096)
prediction_81[strt:endt,:] = logits_81
prediction_1006[strt:endt,:] = logits_1006
lab_81[strt:endt,:] = labels_81
lab_1006[strt:endt,:] = labels_1006
print("completed calculating predictions over all images")
logging.info("completed calculating predictions over all images")
logits_81_5 = prediction_81.clone()
ap_81 = util.compute_AP(prediction_81.cuda(), lab_81.cuda())
F1_3_81,P_3_81,R_3_81 = util.compute_F1(prediction_81.cuda(), lab_81.cuda(), 'overall', k_val=3)
F1_5_81,P_5_81,R_5_81 = util.compute_F1(logits_81_5.cuda(), lab_81.cuda(), 'overall', k_val=5)
print('ZSL AP',torch.mean(ap_81))
print('k=3',torch.mean(F1_3_81),torch.mean(P_3_81),torch.mean(R_3_81))
print('k=5',torch.mean(F1_5_81),torch.mean(P_5_81),torch.mean(R_5_81))
logging.info('ZSL AP: %.4f',torch.mean(ap_81))
logging.info('k=3: %.4f,%.4f,%.4f',torch.mean(F1_3_81),torch.mean(P_3_81),torch.mean(R_3_81))
logging.info('k=5: %.4f,%.4f,%.4f',torch.mean(F1_5_81),torch.mean(P_5_81),torch.mean(R_5_81))
logits_1006_5 = prediction_1006.clone()
ap_1006 = util.compute_AP(prediction_1006.cuda(), lab_1006.cuda())
F1_3_1006,P_3_1006,R_3_1006 = util.compute_F1(prediction_1006.cuda(), lab_1006.cuda(), 'overall', k_val=3)
F1_5_1006,P_5_1006,R_5_1006 = util.compute_F1(logits_1006_5.cuda(), lab_1006.cuda(), 'overall', k_val=5)
print('GZSL AP',torch.mean(ap_1006))
print('g_k=3',torch.mean(F1_3_1006), torch.mean(P_3_1006), torch.mean(R_3_1006))
print('g_k=5',torch.mean(F1_5_1006), torch.mean(P_5_1006), torch.mean(R_5_1006))
logging.info('GZSL AP:%.4f',torch.mean(ap_1006))
logging.info('g_k=3:%.4f,%.4f,%.4f',torch.mean(F1_3_1006), torch.mean(P_3_1006), torch.mean(R_3_1006))
logging.info('g_k=5:%.4f,%.4f,%.4f',torch.mean(F1_5_1006), torch.mean(P_5_1006), torch.mean(R_5_1006))
print("------------------------------------------------------------------")
print("TEST Time: {:.4f}".format(time.time()-test_start_time))
print("------------------------------------------------------------------")
logging.info("------------------------------------------------------------------")
logging.info("TEST Time: {:.4f}".format(time.time()-test_start_time))
logging.info("------------------------------------------------------------------")
if not opt.train_full_data:
for epoch in range(start_epoch, num_epochs): # loop over the dataset multiple times
train(epoch)
if (epoch > 3 and epoch % eval_interval == 0) or epoch == num_epochs - 1:
model_biam.eval()
val(epoch)
model_biam.train()
if opt.cosinelr_scheduler:
scheduler.step()
if (epoch > 3 and epoch % 10 == 0) or epoch == num_epochs-1:
test(epoch)
else:
src = ' results/NUS_WIDE_' + opt.pretrained_model + '/model_best.pth '
dst = os.path.join(opt.save_path, 'model_best.pth')
cmd = 'cp ' + src + ' ' + dst
print(cmd)
os.system(cmd)
## load the best model for training on full data
opt.train = False
data = util.DATA_LOADER(opt) ### INTIAL DATALOADER ###
print('===> total samples')
print(data.ntrain)
logging.info('===> total samples')
logging.info(data.ntrain)
optimizer = torch.optim.Adam(model_biam.parameters(), opt.train_full_lr, weight_decay=0.0005, betas=(opt.beta1, 0.999))
path_chk_rest = os.path.join(opt.save_path, 'model_best.pth')
print(path_chk_rest)
logging.info(path_chk_rest)
model_biam.load_state_dict(torch.load(path_chk_rest))
start_epoch = 1
if opt.cuda:
model_biam = model_biam.cuda()
model_test = model_test.cuda()
data.vecs_81 = data.vecs_81.cuda()
data.vecs_925 = data.vecs_925.cuda()
gzsl_vecs = torch.cat([data.vecs_925,data.vecs_81],0)
for epoch in range(start_epoch, start_epoch+5):
train(epoch)
test(epoch)