-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path13_optimization_2.tex
executable file
·554 lines (461 loc) · 19.4 KB
/
13_optimization_2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
\section{Duality in Optimization}
\subsection{The Primal Problem}
\begin{frame}
\frametitle{The Primal Problem}
\begin{itemize}
\item Consider the \structure{\emph{primal optimization problem}}: \\[.4cm]
\begin{center}
\tikz[baseline]{
\node[fill=bl1!100,anchor=base,rounded corners=3pt] (d1) {
\color{bl3}
$\begin{aligned}
\displaystyle
\mbox{minimize~} & \qquad f_0(\vec{x}) \\[.3cm]
\mbox{subject to} & \qquad f_i(\vec{x}) \leq 0, \quad i=1,2,\dots, m \\
& \qquad h_i(\vec{x}) = 0, \quad i=1,2,\dots, p
\end{aligned}$
};
}\\[.4cm]
\end{center}
with variable $\vec{x}\in\real^n$. \\[.5cm]
\item The function $f_0(\vec{x})$ is \structure{not} required to be \structure{convex}.
\end{itemize}
\end{frame}
\subsection{The Lagrangian}
\begin{frame}
\frametitle{The Lagrangian}
\begin{citeblock}{Lagrangian}
The \structure{\emph{Lagrangian} $L$} of the aforementioned problem is defined as
\begin{displaymath}
L(\vec{x},\vec{\lambda}, \vec{\nu}) =
f_0(\vec{x}) + \sum_{i=1}^m \lambda_i f_i(\vec{x}) + \sum_{i=1}^p \nu_i h_i(\vec{x})
\end{displaymath}
\pause
\begin{itemize}
\item $\lambda_i$ is the Lagrange multipliers associated with the $i$-th \structure{inequality} \\
constraint $f_i(\vec{x})\leq 0$. \\[.15cm] \pause
\item $\nu_i$ is the Lagrange multiplier associated with the $i$-th \structure{equality} constraint $h_i(\vec{x})= 0$. \\[.15cm] \pause
\item The vectors $\vec{\lambda}$ and $\vec{\nu}$ are called {\em Lagrange multiplier vectors} \\
or simply \structure{\emph{dual variables}}.
\end{itemize}
\end{citeblock}
\end{frame}
\subsection{Lagrange Dual Function}
\begin{frame}
\frametitle{Langrange Dual Function}
\begin{citeblock}{Lagrange dual function}
The \structure{\emph{Lagrange dual function}} is defined as the infimum of the Lagrangian \\
over $\vec{x}$
\begin{eqnarray*}
g(\vec{\lambda,\nu})
& = & \inf_{\vec{x}}L(\vec{x},\vec{\lambda}, \vec{\nu}) \\ \pause
& = & \inf_{\vec{x}} \left(
f_0(\vec{x}) + \sum_{i=1}^m\lambda_i f_i(\vec{x}) +
\sum_{i=1}^p\nu_i h_i(\vec{x})
\right)
\end{eqnarray*}
\end{citeblock}
\pspread
\structure{Note:}
\begin{itemize}
\item The Lagrange dual function is a \structure{pointwise affine function} \\
in the dual variables. \pause
\item The \structure{Lagrange dual function is concave} \\
(even if the original problem is not convex).
\end{itemize}
\end{frame}
\begin{frame}{Optimal Value and Lower Bound}
\begin{lemma}
Let $p^*$ be the optimal value of the optimization problem. \\
For any $\vec\lambda \succeq 0$ and any $\vec \nu$ the following bound is valid:
\begin{displaymath}
g(\vec{\lambda,\nu}) \leq p^*
\end{displaymath}
\end{lemma}
\end{frame}
\begin{frame}{Optimal Value and Lower Bound \cont}
\begin{center}
\resizebox{.8\linewidth}{!}{
\alt<13->{
\input{\texfigdir/lagrange13.pstex_t}
}{\alt<12>{
\input{\texfigdir/lagrange12.pstex_t}
}{\alt<11>{
\input{\texfigdir/lagrange11.pstex_t}
}{\alt<10>{
\input{\texfigdir/lagrange10.pstex_t}
}{\alt<9>{
\input{\texfigdir/lagrange09.pstex_t}
}{\alt<8>{
\input{\texfigdir/lagrange08.pstex_t}
}{\alt<7>{
\input{\texfigdir/lagrange07.pstex_t}
}{\alt<6>{
\input{\texfigdir/lagrange06.pstex_t}
}{\alt<5>{
\input{\texfigdir/lagrange05.pstex_t}
}{\alt<4>{
\input{\texfigdir/lagrange04.pstex_t}
}{\alt<3>{
\input{\texfigdir/lagrange03.pstex_t}
}{\alt<2>{
\input{\texfigdir/lagrange02.pstex_t}
}{
\input{\texfigdir/lagrange01.pstex_t}
}}}}}}}}}}}}
}
\end{center}
\end{frame}
\begin{frame}{Optimal Value and Lower Bound \cont}
\begin{columns}
\column{.6\linewidth}
\begin{center}
\resizebox{\linewidth}{!}{
\input{\texfigdir/dual.pstex_t}
}
\end{center}
\column{.4\linewidth}
\vspace{.3cm}
\begin{itemize}
\item Neither $f_0(x)$ nor $f_1(x)$ is convex,
\item but the dual function $g(\lambda)$ is concave!
\end{itemize}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Optimal Value and Lower Bound \cont}
Let $\tilde{\vec{x}}$ be a \structure{feasible point} of the optimization problem. \\[.3cm]
If $\vec{\lambda}\succeq 0$, we have due to the \structure{$m$ inequality} and \structure{$p$ equality} constraints:
\begin{displaymath}
\sum_{i=1}^m \lambda_i f_i(\tilde{\vec{x}}) +
\sum_{i=1}^p\nu_i h_i(\tilde{\vec{x}})
\leq 0~,
\end{displaymath}
\pause
Thus we have
\begin{displaymath}
L(\tilde{\vec{x}},\vec{\lambda},\vec{\nu}) =
f_0 ({\tilde{\vec{x}}}) +
\sum_{i=1}^m\lambda_i f_i(\tilde{\vec{x}}) +
\sum_{i=1}^p\nu_i h_i(\tilde{\vec{x}})
\leq f_0 ({\tilde{\vec{x}}})~.
\end{displaymath}
\end{frame}
\begin{frame}
\frametitle{Optimal Value and Lower Bound \cont}
Using the \structure{definition of the dual function} we get:
\begin{displaymath}
g(\vec{\lambda,\nu}) =
\inf_{{\vec{x}}} L({\vec{x}},\vec{\lambda}, \vec{\nu}) \leq
L(\tilde{\vec{x}}, \vec{\lambda}, \vec{\nu}) \leq
% f_0(\tilde{\vec{x}}) +
% \sum_{i=1}^m\lambda_i f_i(\tilde{\vec{x}}) +
% \sum_{i=1}^p\nu_i h_i(\tilde{\vec{x}}) \leq
f_0(\tilde{\vec{x}})
\end{displaymath}
\pause
\vspace{.25cm}
The inequality $g(\vec{\lambda,\nu}) \leq f_0(\tilde{\vec{x}})$ holds for \structure{every feasible point $\tilde{\vec{x}}$}.\\[.5cm]
\pause
Consequently, the dual function $g(\vec{\lambda,\nu})$ is also smaller or equal to the optimal value $p^*$:
\begin{displaymath}
g(\vec{\lambda,\nu}) \leq p^*
\end{displaymath}
\hfill \qed %\structure{\ensuremath{\blacksquare}}
\end{frame}
\subsection{The Lagrange Dual Problem}
\begin{frame}
\frametitle{The Lagrange Dual Problem}
\structure{Problem:} how to find the best lower bound for the primal problem \\[1cm]
The Lagrange dual problem is given by the optimization problem:
\begin{eqnarray*}
\mbox{maximize} & & g(\vec{\lambda}, \vec{\nu}) \\[.3cm]
\mbox{subject to} & & \vec{\lambda}\succeq 0
\end{eqnarray*}
\end{frame}
\begin{frame}
\frametitle{The Lagrange Dual Problem \cont}
\begin{citeblock}{Optimal duality gap}
Let ${p}^*$ be the optimal value of the primal problem and \\
${d}^*$ the optimal value of the Lagrange dual problem. \\[.3cm] \pause
\begin{itemize}
\item The difference $p^*-d^*$ is the \structure{\emph{optimal duality gap}}. \\[.3cm] \pause
\item If $p^*=d^*$, the duality gap is zero. \\
In this case we talk about \structure{\emph{strong duality}}. \\[.3cm] \pause
\item If $p^*> d^*$, we have \structure{\emph{weak duality}}.
\end{itemize}
\end{citeblock}
\end{frame}
\subsection{Slater's condition}
\begin{frame}
\frametitle{Slater's Condition}
\begin{citeblock}{Theorem}
Given a \structure{\emph{convex} primal optimization problem}:
\small
\begin{eqnarray*}
\mbox{minimize~} & & \quad f_0(\vec{x}) \\
\mbox{subject to} & & \quad f_i(\vec{x}) \leq 0, \quad i=1,2,\dots, m \\
& & \quad \mat{A} \vec{x} = \vec{b}
\end{eqnarray*}
\normalsize
with $f_0, f_1, \ldots, f_m$ being convex. \\[.3cm]
If there exists an $\vec{x} \in \text{relint}~\big\{\mathcal{D} = \cap_{i=0}^m \text{dom}(f_i) \big\}$ with
\small
\begin{align*}
& f_i(\vec{x}) < 0, \quad i=1,\dots,m \\
& \mat{A}\vec{x} = \vec{b}
\end{align*}
then \structure{strong duality} holds.
\end{citeblock}
\end{frame}
\begin{frame}
\frametitle{Refinement of Slater's Condition}
\begin{citeblock}{Theorem}
Given a \structure{\emph{convex} primal optimization problem}. \\[.2cm]
If the first $k$ constraint functions $f_1, \ldots, f_k$ are \structure{\emph{affine}}, and \\
if there exists an $\vec{x} \in \text{relint}~\mathcal{D}$ with
\small
\begin{displaymath}
\renewcommand\arraystretch{1.4}
\begin{array}{l l}
f_i(\vec{x}) \le 0, \quad i=1,\dots,k & \text{\footnotesize (affine constraints)}\\
f_i(\vec{x}) < 0, \quad i=k+1, \ldots, m \qquad \quad & \text{\footnotesize (convex constraints)}\\
\mat{A}\vec{x} = \vec{b} & \\
\end{array}
\end{displaymath}
then \structure{strong duality} holds.
\end{citeblock}
\pause
\vspace{.3cm}
\structure{Note:} the refined Slater's condition reduces to \structure{feasibility} when the constraints are all linear equalities and inequalities, and $\text{dom}(f_0)$ is open.
\end{frame}
\subsection{KKT Optimality Conditions}
\begin{frame}
\frametitle{Karush-Kuhn-Tucker Optimality Conditions}
Let $\vec x^*$ be a primal and $(\vec \lambda^*, \vec \nu^*)$ dual optimal points with zero duality gap. \\[.3cm]
For the primal optimal point $\vec x^*$, the gradient with respect to $\vec x$ of $L(\vec x, \vec \lambda^*, \vec \nu^*)$ is \vec{0}:
\begin{displaymath}
\nabla L(\vec x^*, \vec \lambda^*, \vec \nu^*) =
\nabla f_0(\vec{x}^*) +
\sum_{i=1}^m \lambda_i^* \nabla f_i(\vec{x}^*) +
\sum_{i=1}^p \nu_i^* \nabla h_i(\vec{x}^*) =
\vec{0}
\end{displaymath}
\end{frame}
\begin{frame}
\frametitle{Karush-Kuhn-Tucker Optimality Conditions}
The following four conditions are called KKT conditions: \\[3mm] \pause
\begin{enumerate}
\item \structure{Primal constraints:}
\begin{itemize}
\item $f_i(\vec{x}) \leq 0, \quad i = 1, 2, \dots, m$
\item $h_i(\vec{x}) = 0, \quad i = 1, 2, \dots, p$ \\[3mm] \pause
\end{itemize}
\item \structure{Dual constraints:} $\vec \lambda \succeq 0$ \\[3mm] \pause
\item \structure{Complementary slackness:} $ \lambda_i \, f_i(\vec{x})= 0$ \\[3mm] \pause
\item \structure{Gradient of the Lagrangian $L$ is zero:}
\begin{displaymath}
\nabla L(\vec x, \vec \lambda, \vec \nu) =
\nabla f_0(\vec{x}) +
\sum_{i=1}^m\lambda_i \nabla f_i(\vec{x}) +
\sum_{i=1}^p\nu_i \nabla h_i(\vec{x}) =
\vec{0}
\end{displaymath}
\end{enumerate}
\pause
If strong duality holds and if $\vec x^*$ and $(\vec \lambda^*, \vec \nu^*)$ are optimal points, \\
then the KKT conditions hold.
\end{frame}
\begin{frame}
\frametitle{Karush-Kuhn-Tucker Optimality Conditions}
\alt<15->{
\structure{Complementary slackness:} {\color{gr3} $\lambda_i^* \cdot f_i(\vec{x}^*) = 0$}
}{
\structure{Complementary slackness}
}
\def\phan{\phantom{\stackrel{\color{red} =}{\cancel{\color{black} \le}}}}
\begin{eqnarray*}
\alt<10->{
\tikz[baseline]{
\node[fill=bl1,anchor=base,rounded corners=2pt] (start) {
\color{bl3} $ f_0(\vec{x}^*) $
};
}
}{
\tikz[baseline]{
\node[fill=white,anchor=base,rounded corners=2pt] (res) {
\color{black} $ f_0(\vec{x}^*) $
};
}
}
\pause
& = & g(\vec{\lambda}^*, \vec{\nu}^*) \\ \pause
& = & \inf_{\vec{x}} \Bigg( f_0(\vec{x}) + \sum_{i=1}^m \lambda_i^* f_i(\vec{x}) + \sum_{i=1}^p \nu_i^* h_i(\vec{x}) \Bigg) \\ \pause
\alt<12->{
& \stackrel{\color{red} =}{\cancel{\color{black} \le}} &
}{
&\le&
}
f_0(\vec{x}^*) +
\alt<15>{
\tikz[baseline,remember picture]{
\node[fill=gr1,anchor=base,rounded corners=2pt] (c1) {
\color{gr3} $ \displaystyle \sum_{i=1}^m $
\tikz \node[fill=white,anchor=base, rounded corners=2pt] (cs) {\color{gr3} $ \lambda_i^* f_i(\vec{x}^*) $};
};
\draw [thick, decoration={brace, mirror, raise=0.35cm}, decorate, color=gr3] (cs.west) -- node[pos=0.5,xshift=0mm,yshift=-5.5mm] {
\tiny $= 0$
} (cs.east);
\draw [thick, decoration={brace, mirror, raise=0.75cm}, decorate, color=black] (c1.west) -- node[pos=0.5,xshift=.4mm,yshift=-1.1cm] {
\scriptsize $\stackrel{\color{red}=}{\cancel{\color{black}\le}} 0$
} (c1.east);
}
}{\alt<14>{
\tikz[baseline,remember picture]{
\node[fill=gr1,anchor=base,rounded corners=2pt] (c1) {
\color{gr3} $ \displaystyle \sum_{i=1}^m $
\tikz \node[anchor=base, rounded corners=2pt] (cs) {\color{gr3} $ \lambda_i^* f_i(\vec{x}^*) $};
};
\draw [thick, decoration={brace, mirror, raise=0.75cm}, decorate, color=black] (c1.west) -- node[pos=0.5,xshift=.4mm,yshift=-1.1cm] {
\scriptsize $\stackrel{\color{red}=}{\cancel{\color{black}\le}} 0$
} (c1.east);
}
}{\alt<13>{
\tikz[baseline,remember picture]{
\node[fill=white,anchor=base,rounded corners=2pt] (c1) {
$ \displaystyle \sum_{i=1}^m $
\tikz \node[anchor=base, rounded corners=2pt] (cs) {$ \lambda_i^* f_i(\vec{x}^*) $};
};
\draw [thick, decoration={brace, mirror, raise=0.75cm}, decorate, color=black] (c1.west) -- node[pos=0.5,xshift=.4mm,yshift=-1.1cm] {
\scriptsize $\stackrel{\color{red}=}{\cancel{\color{black}\le}} 0$
} (c1.east);
}
}{\alt<9->{
\tikz[baseline,remember picture]{
\node[fill=white,anchor=base,rounded corners=2pt] (c1) {
$ \displaystyle \sum_{i=1}^m$
\tikz \node[anchor=base, rounded corners=2pt] (cs) {$ \lambda_i^* f_i(\vec{x}^*) $};
};
\draw [thick, decoration={brace, mirror, raise=0.75cm}, decorate, color=black] (c1.west) -- node[pos=0.5,yshift=-1.1cm] {\scriptsize $\phan\le 0\phan$} (c1.east);
}
}{\alt<8>{
\tikz[baseline,remember picture]{
\node[fill=bl1,anchor=base,rounded corners=2pt] (c1) {
\color{bl3} $ \displaystyle \sum_{i=1}^m$
\tikz \node[fill=bl1, anchor=base, rounded corners=2pt] (cs) {$ \lambda_i^* f_i(\vec{x}^*) $};
};
\draw [thick, decoration={brace, mirror, raise=0.75cm}, decorate, color=bl3] (c1.west) -- node[pos=0.5,yshift=-1.1cm] {\scriptsize $\phan\le 0\phan$} (c1.east);
}
}{\alt<7>{
\tikz[baseline,remember picture]{
\node[fill=bl1,anchor=base,rounded corners=2pt] (c1) {
\color{bl3} $ \displaystyle \sum_{i=1}^m$
\tikz \node[fill=bl1, anchor=base, rounded corners=2pt] (cs) {$ \lambda_i^* f_i(\vec{x}^*) $};
};
\draw [thick, decoration={brace, mirror, raise=0.75cm}, decorate, color=white] (c1.west) -- node[pos=0.5,yshift=-1.1cm] {\scriptsize \phantom{$\le 0$}} (c1.east);
}
}{
\tikz[baseline,remember picture]{
\node[fill=white,anchor=base,rounded corners=2pt] (c1) {
\color{black} $ \displaystyle \sum_{i=1}^m $
\tikz \node[anchor=base, rounded corners=2pt] (cs) {$ \lambda_i^* f_i(\vec{x}^*) $};
};
\draw [thick, decoration={brace, mirror, raise=0.75cm}, decorate, color=white] (c1.west) -- node[pos=0.5,yshift=-1.1cm] {\scriptsize \phantom{$\le 0$}} (c1.east);
}
}}}}}}
+
\alt<7->{
\tikz[baseline]{
\node[fill=white,anchor=base,rounded corners=2pt] (c1) {
$ \displaystyle \sum_{i=1}^p \nu_i^* h_i(\vec{x}^*) $
};
\draw [thick, decoration={brace, mirror, raise=0.75cm}, decorate, color=black] (c1.west) -- node[pos=0.5,yshift=-1.1cm] {\scriptsize $= 0$} (c1.east);
}
}{\alt<6->{
\tikz[baseline]{
\node[fill=bl1!100,anchor=base,rounded corners=2pt] (c1) {
\color{bl3} $ \displaystyle \sum_{i=1}^p \nu_i^* h_i(\vec{x}^*) $
};
\draw [thick, decoration={brace, mirror, raise=0.75cm}, decorate, color=bl3] (c1.west) -- node[pos=0.5,yshift=-1.1cm] {\scriptsize $= 0$} (c1.east);
}
}{\alt<5>{
\tikz[baseline]{
\node[fill=bl1!100,anchor=base,rounded corners=2pt] (c1) {
\color{bl3} $ \displaystyle \sum_{i=1}^p \nu_i^* h_i(\vec{x}^*) $
};
\draw [thick, decoration={brace, mirror, raise=0.75cm}, decorate, color=white] (c1.west) -- node[pos=0.5,yshift=-1.1cm] {\scriptsize \phantom{$= 0$}} (c1.east);
}
}{
\tikz[baseline]{
\node[fill=white,anchor=base,rounded corners=2pt] (c1) {
\color{black} $ \displaystyle \sum_{i=1}^p \nu_i^* h_i(\vec{x}^*) $
};
\draw [thick, decoration={brace, mirror, raise=0.75cm}, decorate, color=white] (c1.west) -- node[pos=0.5,yshift=-1.1cm] {\scriptsize \phantom{$= 0$}} (c1.east);
}
}}} \\
\alt<11->{
& \stackrel{\color{red} =}{\cancel{\color{black} \le}} &
}{\alt<9->{
&\le&
}{}}
\alt<10->{
\tikz[baseline]{
\node[fill=bl1,anchor=base,rounded corners=2pt] (res) {
\color{bl3} $ f_0(\vec{x}^*) $
};
}
}{\alt<9>{
\tikz[baseline]{
\node[fill=white,anchor=base,rounded corners=2pt] (res) {
\color{black} $ f_0(\vec{x}^*) $
};
}
}{}}
\phan
\end{eqnarray*}
\onslide<15>
\hfill \qed
\end{frame}
\begin{frame}
\frametitle{Karush-Kuhn-Tucker Optimality Conditions \cont}
\structure{Conclusions \scriptsize ~(Boyd 2004, Sec. 5.5.3)}
\begin{itemize}
\item For \structure{\emph{any} optimization problem} with differentiable objective and constraint functions for which strong duality obtains, any pair of primal and dual optimal points must satisfy the KKT conditions. \\[.2cm] \pause
\item For \structure{any \emph{convex} optimization problem} with differentiable objective and and constraint functions, any points that satisfy the KKT conditions are primal and dual optimal, and have zero duality gap. \\[.2cm] \pause
\item If a \structure{\emph{convex} optimization problem} with differentiable objective and constraint functions satisfies Slater's condition, then the KKT conditions provide necessary and sufficient conditions for optimality.
\end{itemize}
\end{frame}
\subsection{Lessons Learned}
\begin{frame}
\frametitle{Lessons Learned}
\begin{itemize}
\item Formalization of the primal problem using the Lagrangian \\[.5cm]
\item Lagrange dual function \\[.5cm]
\item Duality gap \\[.5cm]
\item Karush-Kuhn-Tucker optimality conditions
\end{itemize}
\end{frame}
\input{nextTime.tex}
\subsection{Further Readings}
\begin{frame}
\frametitle{Further Readings}
\begin{itemize}
\item S.~Boyd, L.~Vandenberghe: \\
\structure{Convex Optimization}, \\
Cambridge University Press, 2004. \\
\point{\small \url{http://www.stanford.edu/~boyd/cvxbook/}} \\[.25cm]
\item Jorge Nocedal, Stephen Wright: \\
\structure{Numerical Optimization}, \\
Springer, New York, 1999.
\end{itemize}
\end{frame}
\subsection{Comprehensive Questions}
\begin{frame}
\frametitle{Comprehensive Questions}
\begin{itemize}
\item What is the Lagrangian of a constrained objective function? \\[1cm]
\item What is the Lagrange dual function? \\[1cm]
\item What is the duality gap? \\[1cm]
\item What are the Karush-Kuhn-Tucker optimality conditions?
\end{itemize}
\end{frame}